论文部分内容阅读
本论文分为五章,其中第1章概述了本论文研究的基础知识以及工作背景;从第2章到第5章分别介绍了使用两种方法合成稀土掺杂的两种镥氧化物的纳米粉末和透明陶瓷的过程,同时研究和比较了它们的微观结构和发光性能。第1章介绍了稀土功能材料,光致发光的基本原理与三价稀土离子的发光特性,概述了纳米材料、闪烁体透明陶瓷在国内外的研究、发展和取得的成果,并结合本工作具体介绍了两种制备纳米粉体及透明陶瓷的方法,同时讨论了影响透明陶瓷透明度的一些因素。第2章主要介绍了Lu2O3:Eu3+纳米粉末的共沉淀法制备过程,并与溶剂热法制备的样品进行比较。XRD和FTIR结果显示溶剂热法加快了无定形前驱物的晶化,有效地降低了高温煅烧下粉体的结晶温度。XRD和SEM结果表明共沉淀法制备的Lu2O3:Eu3+前驱粉是具有200nm棒状结构的非晶态物质,而溶剂热法制备的前驱粉主要是50nm的近球形颗粒,其主要成分是LuOOH,且于400℃煅烧下出现Lu203的相。相同初始条件下,比较了共沉淀和溶剂热法获得的Lu2O3:Eu3+粉末的颗粒度、形貌和发光性质。研究了不同沉淀剂、不同Eu3+掺杂浓度、不同煅烧温度和煅烧气氛对共沉淀法制备的Lu2O3:Eu3+粉体发光的影响,并对部分样品的衰减进行了测量,分析了Lu2O3:Eu3+粉体的荧光寿命和粉体颗粒度的关系。将煅烧获得的Lu2O3:Eu3+粉体在不使用任何添加剂的情况下,使用干压成型制成素坯,于先真空后氮气烧结方式下获得了Lu2O3:Eu3+透明陶瓷。初步比较了不同制备条件下Lu2O3:Eu3+透明陶瓷的透明度,分析了一些具体影响陶瓷透明度的因素。第3章介绍了溶剂热法制备LuAG:Ce3+纳米粉体,并研究其发光性质。FTIR和XRD测量结果表明,溶剂热法合成的LuAG:Ce3+前驱粉体的主要成分是AlOOH,煅烧温度400℃下有Lu2O3相的出现,而未经过溶剂热法制备的前驱粉在800℃下煅烧还是非晶态。比较了不同的沉淀剂、不同醇水体积比、不同煅烧温度对溶剂热法合成LuAG:Ce3+粉体形貌的影响。研究了不同Ce3+掺杂浓度、不同的沉淀剂和不同煅烧温度下,溶剂热法合成LuAG:Ce3+粉体的发光,实验结果表明当Ce3+的掺杂浓度为1%,使用碳酸氢铵加氨水作为混合沉淀剂,在1000℃下进行煅烧,溶剂热法获得的LuAG:Ce3+纳米荧光粉的发光强度较强。LuAG:Ce3+荧光粉5d→4f的发射谱是位于450-650nm波长范围内的两个发射带叠加组成的宽带,其很好的与硅光电二极管灵敏度曲线匹配。第4章用共沉淀方法和溶剂热方法,使用碳酸氢铵加氨水作为沉淀剂制备了LuAG:Ce3+纳米粉末及透明陶瓷。XRD、FTIR、SEM实验结果表明,共沉淀方法获得的LuAG:Ce3+前驱粉体具有无定形片状结构,其主要成分是碳酸盐NH4Al(OH)2CO3 and Lu2(CO3)3·nH2O,而溶剂热法获得的LuAG:Ce3+前驱粉体包含一些八面体形状的物质,其成分主要是由AlOOH和Lu(OH)3组成的氢氧化物。在1100℃煅烧条件下,共沉淀法制备的LuAG:Ce3+粉体,其颗粒呈现近球形,分散性好,分布较为均匀,粒径约为80-100nm;溶剂热法在同样煅烧条件下获得的LuAG:Ce3+粉体,团聚较为严重,由粒径30-50nm不规则的小颗粒所组成。比较了不同煅烧温度和气氛下,共沉淀和溶剂热法制备的LuAG:Ce3+粉体的发光。在同样初始条件下,溶剂热法制备的LuAG:Ce3+粉体的激发和发光强度较强。将获得的LuAG:Ce3+纳米粉末,在没有任何添加剂情况下压片,于先真空后氮气烧结的方式下制备了透明陶瓷。比较了两种方法制备LuAG:Ce3+陶瓷的微观结构和透明度以及具体实验中影响陶瓷透明度的因素。分析了两种方法制备的LuAG:Ce3+透明陶瓷的激发和发射谱,比较了不同激发波长下的发光强度变化规律,并分析了原因。与共沉淀法相比,溶剂热法制备的LuAG:Ce3+粉体和透明陶瓷的激发和发光强度都较强,但其制备样品的时间相对较长,产量相对较低,制备过程需要进一步优化。在第5章中,通过将溶剂热法(270℃保温2h)获得的LuAG:Ce3+前驱粉末直接压片,在无任何添加剂情况下,于先真空后氮气气氛烧结的方式下制备了LuAG:Ce3+透明陶瓷。研究了该透明陶瓷在紫外可见以及真空紫外区的光谱性质。在不同激发波长激发下,研究了所合成LuAG:Ce3+透明陶瓷的发光。并与第4章得到的LuAG:Ce3+透明陶瓷的微观结构、透明度及发光进行比较,发现该方法制备的LuAG:Ce3+透明陶瓷,其制备工艺简单,透明度有了明显的改善,发光较强。