建筑形变监测物联网的设计与实现

来源 :电子科技大学 | 被引量 : 0次 | 上传用户:hqxx03447
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
近年来随着中国城市化水平的提高,高层建筑的数量也逐日攀升,随之而来的是高层建筑的安全检测以及消防安全问题,如何在火灾现场应对建筑垮塌并确保人身安全,成为了消防从业人员的巨大挑战。现阶段的建筑形变监测手段需要消耗大量人力、物力和时间成本,难以在火灾等恶劣环境中实现可靠的全方位实时建筑健康监测和预警。因此,消防从业人员急需一种工作于恶劣环境下的可靠在线建筑形变监测系统,确保消防抢险人员的人身安全并降低维护成本。随着无线传感网络的快速发展,通过传感器与无线网络可以实现大范围、全天候和全自动的在线监测。本文实现了一种在线建筑形变监测物联网系统,具备日常环境和火灾环境场景下实时监测的功能。本研究主要从建筑形变传感网络设计、无线网络时间同步和无线传感网络可靠性设计三方面开展了以下工作内容:1、针对目前建筑形变监测手段单一和维持成本高等因素,无法在火灾等恶劣环境中实现可靠的全方位实时建筑健康监测的问题,本文实现了建筑形变监测物联网的设计。传感器上采用了MEMS倾角传感器、GNSS RTK位移传感器和K型热电偶温度传感器,用于在线监测建筑结构的形变和温度变化情况,其中倾角传感器和温度传感器用于室内建筑结构监测,位移传感器用于建筑整体结构监测;无线传感网络选用低复杂度的Lo Ra WAN,其具备低功耗、长距离和大容量的优点,利于实现建筑室内无线传感网络覆盖,为终端和服务器的数据交互提供了可靠的通信链路支撑。2、针对建筑形变监测系统后端的数据处理手段对各终端时间同步的需求,本文实现了改进泛洪时间同步协议在Lo Ra WAN的应用。通过在网关和终端应用硬件时间戳技术,在异常值抑制方面使用效果优异的迭代加权最小二乘拟合法,在各终端维持低网络负载和低功耗的前提下,该方案实现了高精度且稳定性良好的时间同步效果,可以满足建筑形变监测物联网的需求。3、Lo Ra WAN使用ALOHA算法实现无线信道防冲突,这种算法在高网络负载下会出现吞吐率下降、可靠性下降和功耗上升等问题。针对上述问题,本文实现了无线传感网络的可靠性设计,通过时分多址在Lo Ra WAN上的应用,在系统输入负载不变的情况下,提升了系统的吞吐率、可靠性,并降低了终端的功耗;通过自定义时间片和时隙调度功能,解决了以往固定时隙分配带来的系统灵活度降低等问题,并提高了后端对数据的利用率。
其他文献
嗜水气单胞菌(Aeromonas hydrophila)常导致鱼虾等水生生物患病,这不仅给沿海地区的经济造成损失,且制约水产养殖业的长久可持续发展。A.hydrophila的致病性是复杂、多因素的,主要通过产生和分泌相关毒力因子导致宿主患病。其中,溶血素基因(ahh1)在A.hydrophila感染宿主过程中起重要作用,阐释其功能及作用机理对于病害防治及疫苗开发具有现实意义。本课题首先通过原核表达
随机性是现实世界中最基本的客观不确定性,而概率论是用来处理随机现象的数学工具.随着人们对不确定现象了解的日益深入,一些学者开始挑战概率测度的可列可加性,先后提出了容度、模糊测度、可能性测度等完全非可加测度.完全非可加测度在否定可加性的同时,也否定了自对偶性,从而违背了数学科学中最基本的法则矛盾律和排中律.为了解决这一问题,Liu提出一类具有规范性、单调性、自对偶性、可列次可加性的部分可加的不确定测
睡眠在中枢神经系统(CNS)稳态的维持以及记忆和认知功能的发挥中必不可缺。但随着科学技术的进步,生活和精神压力的增加导致睡眠剥夺越来越成为一种普遍的社会现象。正如我们所了解的,睡眠剥夺会导致记忆功能受损,但有关内在机制的研究相对缺乏。记忆的形成与巩固需要形成新的突触或者消除弱突触以增强特定功能突触的活性。在中枢神经系统中,小胶质细胞为重要免疫细胞,是调控大脑发育与稳态的关键细胞。睡眠过程中,小胶质
本文的主要内容是用Hall代数的方法研究量子群的晶体基中对应于exceptional模的元素与构造仿射型包络代数U(n+)的整基。主要有以下两个方面的结果:第一,对任意有限维遗传代数A,其Hall代数的合成子代数同构于量子群的正部分Uv+。我们考虑exceptional A-模Vλ,即Vλ满足ExtA~1(Vλ,Vλ) = 0。Vλ在Hall代数中的对应元素记为uλ,Vλ的维数向量设为α。我们知道
复杂腔体结构以及含腔体目标的散射特性求解一直以来都是计算电磁学(CEM)中最重要,同时也是极具挑战性的课题之一。腔体结构是飞机上散射较强的部分,开展腔体类目标电磁散射研究,对理解腔体内电磁波传播机理、腔体外形结构设计及腔体类隐身材料性能都具有重要价值。电磁积分方程方法作为一种高效的全波数值方法,只需对目标表面或者目标自身区域进行几何离散,具有剖分网格灵活,计算结果精确等优势。然而,积分方程方法用于
随着通信技术的不断发展成熟,低频通信已经无法满足人们日益增长的需求,对于卫星通信系统而言,目前使用最为普遍的是Ku/Ka波段,但在这两个频段内,信号通信带宽较窄,并且传输速率较低,会增加系统调制解调的复杂性。为了获得更大的信道容量以及缩短信号传送时间,国内卫星通信领域专家在如何利用毫米波以上频率的问题上进行了深入研究。但无论哪个频段,对一个通信系统来说最重要的还是信号传输的准确性。以功率放大器为核
随着无线电的发展,人们对频率源研究不断深入,研究不局限在单一结构频率源。混合式频率源相比于锁相环具有很高灵活性,能应对复杂的应用场景。本文采用双PLL(Phase Locked Loop)技术通过混频的方式实现多频段输出。混合式频率源输出频率相比于DDS(Direct Digital Synthesis)输出频率高,相比于PLL输出步进小。双锁相环混频PLL既可实现宽频带输出又可实现小步进,相比于
时间反演技术因具有良好的时空聚焦特性,目前已成为目标定位、目标成像、无线通信等领域的研究热点之一。该技术在解决电磁波传播过程中的逆问题与实现激励源的源重构应用中具有巨大的研究价值。本文围绕时间反演技术的时空聚焦特性,探索了一系列新型算法和改进算法,并将其应用在基于源重构的相控阵失效阵元诊断和电磁干扰源定位中,获得了良好的应用效果。具体研究内容分为以下四个部分:首先,本文基于数字信号处理方法对时间反
等离子体诊断,是研究高速飞行器返回地球时产生的黑障现象的一个重要研究方向。黑障现象产生的等离子体鞘套干扰实时通信,给各类飞行任务造成安全隐患和财产损失。因而,研究等离子体鞘套的电磁特性对解决黑障问题具有重大意义。利用大型激波管进行等离子体诊断是常用的一种方式,而用微波进行等离子体诊断是应用广泛的一种方法。本文主要研究了利用微波透射法诊断等离子体的电子密度和碰撞频率等参量,内容分为以下几个方面:第一
无线通信技术迅猛发展,衍生出多样的业务场景。但由于无线信道的开放特性,通信过程容易受到非法方窃听和欺骗的攻击。传统的认证与加密方案通常建立在网络协议栈的高层,面对日益增长的量子计算能力以及大规模机器连接等新兴业务场景,传统的安全机制面临挑战。基于此,本文针对无线信道天然的随机性与独特性研究了轻量级高可靠的物理层身份认证与密钥生成技术,作为传统安全方案的补充,主要工作包括:论文在单跳网络下研究了三种