论文部分内容阅读
随着机器视觉技术的发展,立体视觉尤其是双目立体视觉被广泛应用于物体识别、虚拟现实、工业检测、机器人导航和航空航天等领域。双目立体视觉技术可在多种条件下灵活的获得景物的立体信息,相对单目视觉而言有着不可比拟的优势,是图像处理与机器视觉领域的前沿研究方向。本文对如何在半结构化环境中利用双目立体视觉进行工件的空间三维定位进行了探索与研究。
摄像机标定是机器视觉领域里从二维图像获取三维信息必不可少的步骤。考虑传统标定方法与自标定方法的优点结合具体的实验环境,在不考虑摄像机畸变的情况下,本文采用基于透射投影的双目摄像机线性标定方法,总结了一种直接从图像坐标映射到世界坐标的方法。该方法在保证标定精度的同时,避免了求解摄像机的内参数和外参数带来的误差,大大降低了摄像机标定实验的操作难度和繁琐程度。
为了获得工件的深度信息,对左右摄像机拍摄的图像进行立体匹配。在尺度空『自J理论基础上,采用图像处理领域的最新研究成果-SIFT特征算子进行匹配,并在具体应用过程中作了改进。实验证明,该方法能很好地解决工件图像具有旋转、缩放、平移、遮挡、噪声等情况下的立体匹配问题,相比原始算法在处理速度上有很大的提高。
在对工件进行识别定位时,利用SIFT特征抵抗旋转、缩放的特点,将其集合作为模板特征在采集的工件图像中寻找对应的工件,并采用基于目标边缘的工件形心计算方法,结合双目摄像机标定实现工件的三维空间定位。在保证算法精度和鲁棒性的前提下,该方法解决了传统模板匹配方法数据量较大的缺点,能够满足实验环境或车间环境下的工件识别定位。