论文部分内容阅读
传感器技术是测量技术、半导体技术、计算机技术、信息处理技术、微电子学、光学、声学、精密仪器、仿生学和材料科学等众多学科相互交叉的综合型和高新技术密集型前沿技术之一,是现代新技术革命和信息社会的重要基础,是自动检测和自动控制技术不可缺少的重要组成部分。目前,传感器已成为国民生活不可缺少的重要组成部分。光纤传感是融纤维光学、微电子学、精密机械和计算机等学科于一体的高新技术,这就注定它是一门技术难度大,协作配套广的知识密集型产业。故对其理论的深层次研究和新原理光纤传感器的开发成为当务之急。
文章闸述了相位调制型光纤传感器的基本原理,光纤迈克尔逊和马赫-泽德尔干涉仪的基本原理,以及光纤迈克尔逊和马赫-泽德尔干涉仪的研究现状及应用情况。在此基础上,利用相位调制法设计了基于全光纤Mach-Zehnder干涉仪的温度和电压传感装置,对Mach-Zehnder干涉仪进行了实验研究,实验中通过改变测量臂温度(改变压电陶瓷两边的电压)的方法改变Mach-Zehnder干涉仪的臂长差,研究了外加温度与干涉仪光谱的输出关系,采用波长定标的方法,当温度在26℃-80℃的区间变化时,得出了干涉谱线中某一特定波长的移动与外加温度的关系,得到了0.957nm波长调节范围,对应干涉仪相位改变约4π,线性拟合度达到0.972。理论与实验得到较好的吻和。
研究了M-Z干涉仪的电压传感原理:将M-Z干涉仪的传感臂粘贴到一圆筒状的压电陶瓷上,该压电陶瓷圆筒的内外侧焊有电极。当有直流电压加到其上时,压电陶瓷会在纵向伸长,带动其上的光纤长度发生变化,从而引起干涉仪两臂的长度差别产生变化,使干涉条纹发生移动。通过实验定标,当我们观察到条纹移动了多少,就能反过来推知电压的大小。
PZT的驱动电源为直流稳压电源,电压范围为:-28.7-28.7伏特。拟合线性度为0.9991;调谐的范围是2.18nm(相当于整体平移了1.95π),所以调谐灵敏度为O.038nm/Volt。
在第4章,详细地对光纤Mach-Zehnder干涉仪和Micheson干涉仪做了数值研究,得出了一些重要结论。随后,给出了两种光纤干涉仪的应用例子。
本论文详细介绍了国内外光纤传感器的发展现状,研究设计了一种基于全光纤马赫-泽德尔(Mach-Zehnder)干涉仪的相位调制型光纤传感器。全光纤的Mach-Zehnder干涉仪是一种重要的干涉器件,因其具有干涉现象、体积小、重量轻、结构紧凑、灵敏度高等特点,可用于光纤通讯和光纤传感领域。
本文实验结果表明,文章设计的传感器结构非常简单、灵敏度却较高、价格低廉、较适合在实际中应用,具有广泛的研究和应用价值。