论文部分内容阅读
中间相炭微球(MCMB)是一种新型功能炭素材料,具有独特的微米尺度球形结构、化学性质稳定、易石墨化等特点。在高密度高强度炭材料、高比表面积活性炭、催化剂载体、锂离子电池负极材料等领域得到了良好应用,尤其近几年迅猛发展的动力电池更是推动了中间相炭微球的研究。本文以萘为原料,Al Cl3为催化剂,采用自升压法合成了性能良好的萘沥青,然后酸洗脱灰,经中间相热转化得到含球中间相沥青,溶剂萃取后获得MCMB,最后对中间相炭微球进行碳化和KOH活化,分别评价其电池性能和电容性能。同时运用多种表征手段(工业性质分析、FTIR、GC/MS、GPC以及TG/DTG、SEM、PLM、Raman、XRD)对萘沥青、中间相热转化产物、炭微球的微观结构进行了研究,结果表明:(1)220℃是萘沥青合成较适宜的温度,其芳香性随催化剂比例的增加而增大。萘沥青在甲苯和喹啉中都有较高溶解度,分子量在147~3940范围,质均分子量约为317Da,在750℃时的残炭率在30%左右,酸洗可使灰分降到2%以下。碳化后焦炭的光学组织以镶嵌结构为主。(2)萘沥青在390℃处理4h可得含球中间相产物,而外加Ca CO3和Si O2可促进萘沥青芳烃缩聚,缩短成球时间,并且增大小球生成量,小球直径主要分布在3~10μm范围内。无添加剂时萃取获得的MCMB球形度最好,且表面光滑、粒度均匀,添加10%Ca CO3能得到27.91%的最高萃取产率。(3)KOH活化后,MCMB表面出现裂纹,但无明显的孔洞存在。在1A/g的电流密度下,其比电容仅为106F/g,而添加5%Si O2可使其比电容显著提高到200F/g,这归因于其表面均匀分布的少量Si元素,活化的最佳炭碱比为1:3。(4)1000℃碳化后,MCMB粒径略有减小、呈椭球形,表面仍然十分光滑。在15m A/g的电流密度下,其首次充放电比容量分别为362m Ah/g和859m Ah/g,首次库伦效率为42%;循环50圈次后还有约155m Ah/g的充放电比容量,库伦效率约99%,展现出良好的充放电可逆性;在500m A/g的大电流密度下,充放电比容量仅为28m Ah/g,其倍率性能有待提高。