论文部分内容阅读
生物气溶胶的释放已成为生物恐怖袭击的主要方式,跨境人群携带的高危病原微生物的强感染和快传播对人类及社会的威胁,使得快速实现细菌和其他空气中生物物种的监测变得越来越重要。越来越多的国家已经着力研究有效快速的实现生物气溶胶的实时监测与控制方法,以更快、更精确的进行预警,降低不必要的损失。我国对生物恐怖袭击的检测识别技术研发相对较晚,检测仪器和手段较少,这将影响对反恐安全的防范。因此进行生物气溶胶检测方法的研究对于生物安全以及生防反恐领域具有重要的现实意义和学术价值。本文主要利用拉曼光谱技术以及荧光光谱技术对所收集的气溶胶中存在的生物微粒标准样品进行鉴别分析,为后续生物气溶胶的研究提供参考。以拉曼光谱技术为主要手段、荧光光谱技术为辅助手段,以常见的20种生物标准样品为研究对象,通过相关文献的查阅及实验,对这20种生物标准样品的262个样本进行了拉曼光谱采集,并对部分样品的荧光光谱进行了采集分析。对所得数据进行了预处理,通过系统聚类分析法、主成分分析(PCA)和支持向量机(SVM)法实现生物气溶胶的分类识别,为生物气溶胶的检测、分类及预警奠定基础。本论文主要从如下几方面进行了生物气溶胶检测及识别方法的研究工作:1.利用共焦显微拉曼光谱仪对生物标准样品的拉曼光谱进行了采集,以松花粉样本为实验对象,通过试验参数的分析对比选择了生物气溶胶中花粉的最佳检测参数,主要包括激光波长、积分时间、共焦孔径等,即激光波长785nm,积分时间30s,共焦孔径为300μm,扫描范围为300-1800cm-1。由于细菌、真菌不能通过传统拉曼光谱检测技术直接获得其拉曼光谱,采用表面增强拉曼光谱(SERS)检测技术,以“花状”纳米银溶胶为基底,采用532nm波长的激光,同时通过控制菌样与银溶胶的混合体积比及结合时间,在激光功率衰减100倍或1000倍的情况下,增强了拉曼信号强度,成功采集了细菌、真菌的拉曼光谱图。2.对采集的生物标准样品拉曼光谱进行了处理分析。首先进行了拉曼光谱的预处理,通过对比分析,采用窗口大小为11点的Savitzky-Golay法平滑、利用线性拟合法去基线、采用最大归一化法进行归一化等基本处理,尽可能去除光谱采集时产生的噪声、基线漂移、数量级差异等问题。对于处理后的光谱数据先利用IBM SPSS Statistics 19统计分析软件进行了系统聚类分析,利用完整的拉曼光谱数据进行了分类,并对分类结果进行了验证,准确率达到91.67%,说明系统聚类方法对生物气溶胶拉曼光谱识别分类有一定的有效性;然后利用主成分分析和支持向量机(SVM)进行了识别模型的建立,以182个样本数据作为训练集,80个样本数据为预测集,通过对比分析选择了SVM模型建立的最佳参数,即:采用[-1,1]归一化和多项式核函数,识别率能够达到98.75%,为后续生物气溶胶的研究工作奠定了基础。3.利用荧光光谱技术进行了四种生物标准样品的荧光光谱检测,并对四种样品(松花粉、大肠杆菌、金葡萄球菌、白色念珠菌)的荧光峰进行了对比分析,通过四种样品的荧光光谱可以明显看出:荧光光谱可以较好的对样品进行分类识别。对三种菌样分别利用279nm波长激发光和289nm波长激发光激发得到了三种菌样浓度梯度为10-1-10-8mol/L的荧光光谱;并且利用主成分分析对三种菌样(浓度10-1mol/L)的荧光光谱分类准确率可以达到100%。但是由于荧光光谱采集仪器相比拉曼光谱采集仪器所需的样品量大,受实验样品种类及数量限制等原因,所以仅仅进行了四种样品的荧光光谱检测,在后续的工作中还需要进一步增加荧光光谱检测样品的数量来更好的说明荧光光谱在生物气溶胶研究中的重要作用。综上,利用拉曼光谱技术能够对20种生物标准样品实现有效区分,利用系统聚类分析法建立的鉴别模型,并对分类结果进行了验证,识别准确率达到91.67%;利用主成分分析和支持向量机建立的识别模型,识别准确率可以达到98.75%。利用荧光光谱技术对部分样品进行荧光检测可以很直观的对样品进行区分,并利用主成分分析法对三种菌样的荧光光谱分类准确率可以达到100%。