锡基钙钛矿发光二极管的制备及其光电性质研究

来源 :天津大学 | 被引量 : 0次 | 上传用户:fh2029
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
钙钛矿材料因其高光致发光量子产率,高色纯度和可调节发射波长而受到广泛的关注。受益于这些特性,钙钛矿材料成为发光二极管(LED)有源层的理想选择,并取得了较高的外部量子效率(EQEs)。但常用铅基钙钛矿的毒性问题,严重阻碍了钙钛矿光电器件的商业化进程。近年来,研究者们探索了一系列无铅钙钛矿材料,其中锡基钙钛矿是最有前途的一种。然而,锡基钙钛矿发光二极管(Pe LED)的EQEs仍然处于较低水平,同时器件的稳定性尚待提高。其主要原因在于Sn2+自身稳定性差,容易受到氧气、湿度、温度等因素的影响而加速氧化。研究者发现,通过调控钙钛矿材料的维度能够有效改善材料稳定性。此外,对钙钛矿添加还原剂也是提高器件效率和稳定性的重要途径。本论文主要聚焦二维量子阱结构锡基钙钛矿材料,通过探究不同添加剂的作用,设计出EQE与稳定性协同改善的Pe LED。具体研究工作与成果如下:1.通过简单的旋涂法制备了高质量的二维锡基钙钛矿薄膜,并利用热重分析(TGA)确定了薄膜中Sn2+的氧化途径。基于此,我们选择液体还原剂H3PO2作为添加剂,在提供还原性的同时,与反应前驱体形成复合物以延缓锡基钙钛矿薄膜中Sn2+的氧化,提高薄膜质量。最终,我们采用此策略制备了红光锡基Pe LED器件,在633 nm处表现出稳定的电致发光,器件亮度达到70 cd m-2,半峰宽(FWHM)仅为24 nm。国际照明委员会(CIE)x,y坐标为(0.706,0.294),与2020年Rec红色标准(0.708,0.292)非常接近。2.引入2,3-二羟基萘-6-磺酸钠盐(DSAS)分子以改善锡基Pe LED的性能。结果表明,萘酚磺酸盐DSAS分子具有调节钙钛矿结晶,抑制二价锡氧化以及钝化锡配位不足的作用。DSAS分子对结晶速率的控制显著抑制了钙钛矿薄膜中针孔的形成。抗氧化作用降低了锡的空位浓度并提高了薄膜的稳定性。DSAS分子中的磺酸基作为电子给体,可以与带正电的配位不足的Sn2+离子结合,钝化缺陷并延长载流子复合寿命。得益于这些优点,掺杂DSAS分子制备的锡基钙钛矿发光器件的最大亮度为132 cd m-2,EQE高达0.72%。
其他文献
第三代半导体材料由于具有耐高温、输出功率大、以及击穿电压高等特点,使得电子元器件在新能源汽车、飞机、航空航天等超过250℃的高温条件下工作成为可能。然而,传统的封装互连材料不能满足电子元器件在高温条件下稳定工作的要求,烧结银作为一种新型的封装互连材料凭借其高熔点、高热导率和高电导率受到了人们的广泛关注,但是高成本且易发生电迁移等缺陷限制了其在元器件中的应用。铜具有成本低、导电性能好、抗离子迁移能力
学位
硼酸铝材料由于其独特的性质如高强度、高模量、耐高温、耐腐蚀、热导率低、中子吸收能力强在无机材料领域中扮演着极其重要的角色,近年来,硼酸铝材料已经被广泛应用于高温结构部件,电子陶瓷,增强复合材料以及电磁波屏蔽材料等,尤其在高温隔热领域有着广阔的潜在应用价值。然而,目前国内外对于纯硼酸铝材料的研究相对较少,且多集中于以针状硼酸铝晶须为主体骨架结构的多孔陶瓷。而由于针状硼酸铝晶须长径比小,填充率高,使得
学位
Si3N4-MoSi2复合陶瓷是以Si3N4陶瓷作为基体,MoSi2第二相作为增强相的新一代结构陶瓷材料。因其具有高强度、良好的抗热震性、较高的室温断裂韧性、优异的高温性能、抗氧化性和耐腐蚀性,常应用于涡轮发动机部件等一系列复杂服役环境。但在实际应用过程中,大型或复杂的陶瓷部件不适合整体制造,往往需要与Nb等高温金属连接。本文采用真空钎焊工艺实现Si3N4-MoSi2复合陶瓷与Nb的可靠连接,采用
学位
碳化硅(SiC)陶瓷是一种非常重要的高温结构材料,因其具有高强度、高硬度以及优异的抗氧化性、耐腐蚀性、抗热震性等性能,广泛应用于汽车工业、机械密封、石油化工、航空航天、电子信息等领域,还被认为是未来聚变反应堆的结构组件。尽管碳化硅陶瓷有着非常广泛的应用,但由于碳化硅是典型的强共价键化合物,Si-C键的共价特性和低自扩散性导致其烧结致密化困难。为了获得致密的SiC陶瓷,在其制备过程中通常需要加入烧结
学位
光驱动双层软体致动器具有空间自由度高、远程控制精确和环境适应性强等优点,成为软体机器人、人工肌肉和智能器件等领域研究的热点。然而大多数光驱动双层软体致动器存在形变量小、响应速度慢和形变编程复杂等缺点,同时还面临着界面稳定性较差等挑战,大大限制了其应用。针对以上问题,我们使用具有高光热效率的小金纳米棒设计并制备了双层软体致动器,主要的工作包括以下三个方面:(1)通过改变合成方法和条件,制备了不同尺寸
学位
吉帕级(1 GPa=1000 MPa)超高强钢在大吨位工程机械、舰船甲板及军用装备等高载荷设施上具有广阔的应用前景。传统超高强钢高的碳含量导致焊接性恶化,并且随着强度的提升焊接热影响区(HAZ)愈发成为焊接接头性能的薄弱点。因此,如何改善超高强钢焊接性、提升HAZ性能已成为超高强钢开发及应用亟需解决的重大问题,具有重要的工程价值。为了改善超高强的焊接性,本文对吉帕级超高强钢进行低碳设计,同时引入纳
学位
铝基复合材料因其轻质高强、导电导热性好等优点,在航空航天、汽车等多领域都具有广阔的应用前景。然而,增强体与基体间较大的物化性能差异及强烈的界面反应导致铝基复合材料普遍存在强韧性不匹配、制备过程不可控以及加工成型困难等问题。为解决上述问题,研究者普遍选用本征力学性能优异的纳米材料作为增强体来改善复合材料的综合力学性能。然而,纳米相极易团聚,严重影响了铝基复合材料的性能发挥。此外,随着科技的发展,在航
学位
碳纳米管(CNTs)因具有超高拉伸强度及弹性模量等特点,是铝基复合材料(AMCs)的有效增强相。然而由于CNTs易自发团聚,与金属基体界面润湿性差,难以充分发挥增强效果。因此,实现CNTs在基体中均匀分散和良好界面结合是提高复合材料强韧性的关键所在。本研究以铝粉为基体、以硼酸(H3BO3)为原位氧化铝(Al2O3)原料,通过球磨-冷压-烧结-热挤压的粉末冶金工艺制备了以Al2O3包覆CNTs协同增
学位
6系铝合金良好的导电性被期待代替5系铝合金用于GIL管道外壳。外壳尺寸大成形困难,需采用螺旋焊管双面成形。但螺旋焊管限制其无法采用双轴肩搅拌摩擦焊,目前主要探索双极头同步施焊的焊接方式。本文以6063铝合金在GIL管道外壳螺旋焊管搅拌摩擦焊接双面成形工艺研发为背景需求,开展6063-T6铝合金搅拌摩擦焊工艺试验、力学性能研究等工作,分析6063铝合金析出相演变规律,接头的疲劳性能,为6063铝合金
学位
氟化碳材料是目前理论能量密度最高的固体正极材料,目前锂/氟化碳电池存在实际放电电压低于理论值、放电倍率性能差的问题,而只能在小电流工作环境下应用。研究表明,碳氟键的键型是影响放电电压和倍率性能的主要因素。在高温下进行氟化容易使碳氟以共价键方式结合,导致材料平面共轭结构转变为金刚石型结构,而失去导电性,因此选择温和的氟化温度有利于碳氟半离子键的生成并且提高其导电性,进而提高倍率性能。此外,碳材料的曲
学位