碳化硅陶瓷新型烧结助剂体系研究

来源 :天津大学 | 被引量 : 0次 | 上传用户:wo861030
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
碳化硅(SiC)陶瓷是一种非常重要的高温结构材料,因其具有高强度、高硬度以及优异的抗氧化性、耐腐蚀性、抗热震性等性能,广泛应用于汽车工业、机械密封、石油化工、航空航天、电子信息等领域,还被认为是未来聚变反应堆的结构组件。尽管碳化硅陶瓷有着非常广泛的应用,但由于碳化硅是典型的强共价键化合物,Si-C键的共价特性和低自扩散性导致其烧结致密化困难。为了获得致密的SiC陶瓷,在其制备过程中通常需要加入烧结助剂来降低烧结温度,促进烧结,实现致密化,因此烧结助剂的选择在SiC陶瓷制备中发挥着至关重要的作用。本文首先研究了氟元素对SiC的氧化行为的影响。将不同含量的Na F添加到SiC粉中,然后在500~800℃的空气中氧化30分钟。通过SEM,TEM,XRD,XPS和TG表征证实了SiC粉末发生了剧烈的氧化。XRD图谱和Raman光谱证实了氧化过程中游离碳的形成。最终结果表明,Na F能极大地促进SiC的氧化,起主要作用的元素F能够使Si-C键断裂,活化SiC的晶格。之后进行氟化物体系烧结助剂的筛选,以三种碱金属氟化物(Na F、Ca F2、AlF3)与H3BO3的结合作为组合烧结助剂,采用放电等离子烧结工艺在1850℃下烧结,发现添加AlF3的烧结样品与另外两种碱金属氟化物样品相比性能要优异许多,说明了AlF3作为SiC陶瓷烧结助剂的有效性。为进一步降低烧结温度,探索与AlF3相配合的助剂体系,以Al粉与其它几种不同的助剂(Y2O3,H3BO3,Al2O3,AlF3)相结合作为烧结助剂,采用放电等离子烧结工艺分别在1600℃、1700℃和1850℃三个温度点下烧结,发现Al粉能够促进SiC陶瓷的烧结致密化,Al是一种有效的SiC烧结助剂。最后本文以Al粉与AlF3作为组合助剂,改变两者的质量比,研究的是两种助剂的不同配比对SiC陶瓷烧结与性能的影响。结果发现随着AlF3添加量的增加,硬度值整体上呈现逐渐升高的趋势;断裂韧性在两种助剂总含量为10.0 wt%时出现了两个极值点;在1700℃,助剂含量为10.0 wt%的条件下可获得致密度为99.4%的碳化硅陶瓷,其硬度为22.0 GPa,断裂韧性为7.5 MPa·m1/2,具有最佳的综合性能。在实验结果的基础上,表明AlF3能够活化SiC晶格,Al粉的加入能生成Al4SiC4化合物促进烧结并提升断裂韧性。
其他文献
在脑肿瘤治疗中,血脑屏障(BBB),血脑肿瘤屏障(BBTB)的存在以及化疗药物引起的组织毒性仍然对有效治疗神经胶质瘤的生物相容性药物递送系统提出了极大的挑战。PAMAM树状分子是高度支化的大分子,被视为球状蛋白质的合成生物模拟物,具有可控制的纳米尺寸,单分散性和较大的疏水性内腔,可用于封装疏水性药物,尤其是具有可定制的表面基团和功能。其独特的结构特征使其成为负载疏水性药物和结合靶向分子的理想药物载
学位
糖尿病会造成活性氧(ROS)在心脏部位更严重的聚集,导致更为严重的炎症微环境环境,因而糖尿病患者的心肌梗死治疗对生物材料设计提出了更高的挑战。大量研究表明可注射水凝胶有希望成为治疗心肌梗死的一种新型材料,但是目前还未有针对于糖尿病患者心肌梗死的可注射水凝胶。因此,本文建立了一种可以逆转受损的糖尿病心肌微环境的多功能可注射水凝胶体系。首先,合成了超支化的聚(β氨基酯)(PAE-PBA),其富含丙烯酸
学位
过氧化氢(H2O2),一种环境友好型的强氧化剂,其应用范围覆盖了从污水处理,工业漂白到化学合成和医疗消毒的各行业,其市场需求也使得过氧化氢的合成受到了广泛的关注。传统的过氧化氢合成方式为蒽醌法,但该方法有着能耗高,污染大,生产出的高浓度过氧化氢运输危险等问题。而电化学氧阴极还原合成过氧化氢作为一种理想的替代方法,有着无污染,原子利用率高,可现场合成等优点,因此引起了国内外研究学者的广泛关注。但是该
学位
镁合金具有密度低、导热性好、抗冲击性好、比强度高、比刚度高和生物相容性好等特点,在汽车、军工、航空航天、生物医疗和3C行业等领域具有广阔的应用前景。电弧增材制造(wire arc additive manufacturing,WAAM)可以缩短复杂结构件制造周期,实现小批量快速制造。使用基于冷金属过渡(cold metal transfer,CMT)技术的WAAM方法进行镁合金零部件的制造,可以有
学位
金属-空气电池和电催化分解水技术被认为是未来解决能源危机和环境污染的重要手段。其中,由于氧还原反应(oxygen reduction reaction,ORR)、氧析出反应(oxygen evolution reaction,OER)和氢析出反应(hydrogen evolution reaction,HER)复杂的反应途径和较大的过电位导致其动力学反应过程缓慢,严重阻碍了金属-空气电池和电解水技
学位
由于潜在的生物降解性、相容性以及良好的机械性能,近年来脂肪族聚酯受到了学术界和工业界的广泛关注。在合成聚酯的众多方法中,环氧烷烃和环酸酐的开环交替共聚(Ring opening alternating copolymerization,ROAC)由于其原子经济性、可控性良好、单体来源广泛等优点而备受关注。寻找高活性和优异选择性的催化体系一直是该领域的研究热点。基于此,本论文以市售的碱金属羧酸盐为简
学位
近年来,由共轭聚合物给体和小分子受体组成的有机太阳能电池(OSC)迅速发展,其能量转换效率(PCE)已经突破18%。但是,有机太阳能电池的活性层通常具有较差的热稳定性,这将限制其实际应用。当加工温度高于活性层共混薄膜的玻璃化转变温度时,小分子受体会发生运动,形成微米尺度聚集体,导致OSC器件性能衰减。鉴于此,本论文在活性层中引入具有高玻璃化转变温度(Tg)的绝缘聚合物聚苊(PAC),提高活性层的玻
学位
第三代半导体材料由于具有耐高温、输出功率大、以及击穿电压高等特点,使得电子元器件在新能源汽车、飞机、航空航天等超过250℃的高温条件下工作成为可能。然而,传统的封装互连材料不能满足电子元器件在高温条件下稳定工作的要求,烧结银作为一种新型的封装互连材料凭借其高熔点、高热导率和高电导率受到了人们的广泛关注,但是高成本且易发生电迁移等缺陷限制了其在元器件中的应用。铜具有成本低、导电性能好、抗离子迁移能力
学位
硼酸铝材料由于其独特的性质如高强度、高模量、耐高温、耐腐蚀、热导率低、中子吸收能力强在无机材料领域中扮演着极其重要的角色,近年来,硼酸铝材料已经被广泛应用于高温结构部件,电子陶瓷,增强复合材料以及电磁波屏蔽材料等,尤其在高温隔热领域有着广阔的潜在应用价值。然而,目前国内外对于纯硼酸铝材料的研究相对较少,且多集中于以针状硼酸铝晶须为主体骨架结构的多孔陶瓷。而由于针状硼酸铝晶须长径比小,填充率高,使得
学位
Si3N4-MoSi2复合陶瓷是以Si3N4陶瓷作为基体,MoSi2第二相作为增强相的新一代结构陶瓷材料。因其具有高强度、良好的抗热震性、较高的室温断裂韧性、优异的高温性能、抗氧化性和耐腐蚀性,常应用于涡轮发动机部件等一系列复杂服役环境。但在实际应用过程中,大型或复杂的陶瓷部件不适合整体制造,往往需要与Nb等高温金属连接。本文采用真空钎焊工艺实现Si3N4-MoSi2复合陶瓷与Nb的可靠连接,采用
学位