【摘 要】
:
表面粗糙度作为表征工件表面微观不平整度的重要技术指标,对其进行准确高效的测量尤为重要。现有接触式表面粗糙度测量方法存在检测速度较慢且易划伤被测表面等问题,近年来,光谱共焦测量技术以其可以实现非接触式测量,测量精度高等优点在粗糙度测量领域表现出良好的应用前景。本文基于光谱共焦原理,提出了一种基于白光LED光源的光纤式光谱共焦测量方法,实现了对被测物体表面粗糙度的非接触式测量。本文的主要研究内容如下:
论文部分内容阅读
表面粗糙度作为表征工件表面微观不平整度的重要技术指标,对其进行准确高效的测量尤为重要。现有接触式表面粗糙度测量方法存在检测速度较慢且易划伤被测表面等问题,近年来,光谱共焦测量技术以其可以实现非接触式测量,测量精度高等优点在粗糙度测量领域表现出良好的应用前景。本文基于光谱共焦原理,提出了一种基于白光LED光源的光纤式光谱共焦测量方法,实现了对被测物体表面粗糙度的非接触式测量。本文的主要研究内容如下:对几种常见的表面粗糙度测量方法进行了分析,为实现高精度、非接触式表面粗糙度的测量,设计了光谱共焦测量系统方案。开展了基于光谱共焦原理的表面粗糙度测量方法研究,在论述光谱共焦测量原理的基础上,对系统性能进行了分析。设计了光纤式光谱共焦测量系统结构,并利用ZEMAX光学设计软件完成了共焦光学系统及光谱测量系统的设计。在共焦光学结构的设计过程中,色散物镜的工作波段为400nm-700nm,轴向色散达到1.705mm,像差衍射到达极限。同时对色散物镜的成像情况进行分析,选择数值孔径为0.22的Y型光纤。在光谱测量系统的设计过程中,对系统各部件进行分析,同时设计了基于光栅和光电阵列探测器CCD的系统结构,光谱测量系统的分辨率可达0.5nm。设计了光谱信息处理算法,该算法包括光谱信息预处理、滤波去噪算法、峰值波长提取算法及数据拟合算法,消除了预处理过程中暗信号和噪声信号造成的影响,并解决了峰值波长与聚焦点距离之间的非线性拟合问题。依据光谱信号特点,采用中值滤波算法对随机噪声进行消除,为了确保准确寻峰,采用高斯算法完成峰值波长的提取。设计了全局最优分段拟合的方法,消除数据拟合过程中的病态问题,有效提高了数据拟合精度。最后,搭建并调试表面粗糙度测量系统,完成了光谱仪标定和系统标定,并选取粗糙度标称值为6.3μm端铣加工的比较样块进行检测。根据表面粗糙度评定方法,计算得到表面粗糙度参数Ra值为6.29μm,Rz值为29.52μm。
其他文献
无线紫外光(Ultraviolet,UV)通信通过大气粒子散射传输信息,具有非直视、抗干扰能力强的特点。无人机集群飞行可以提高集群的整体效率,将无人机集群飞行和紫外光通信相结合,可以充分发挥紫外光通信的优势,使集群间通信更加安全可靠。研究无线紫外光网络拓扑容错对无人机集群飞行的稳定性具有重要意义,此外,无人机网络通信链路能否快速恢复严重影响整个网络的连通性能。本文着重研究无线紫外光通信网络拓扑的容
太赫兹(terahertz,THz)波由于其独特的性质,在移动通信、环境监测、物体成像与检测、航空航天和医药卫生等领域有着巨大的应用前景。近年来,世界各国对THz科学与技术领域投入了大量的研究,并取得了丰硕的成果。然而,缺少相对廉价的、快速响应、高灵敏度的室温THz波探测器制约THz技术的发展,为了获得高灵敏度的室温THz波探测器,本项目组己研制了基于等离子体与THz波相互作用的THz波探测器。用
随着互联网技术的不断普及与云计算的飞速发展,大量的数据需要在网络上传输,人们在尽情享受网络便利的同时,也遭受着敏感信息不断泄露的困扰。为了防止大量敏感信息的泄露,需要在数据信息共享之前对其加密,由此来保证数据的机密性与安全性。基于属性的加密(ABE),可以有效地解决上述困扰。密文策略基于属性的加密中,数据拥有者将访问控制结构嵌入在密文中,只有数据使用者私钥中的属性满足访问结构才能解密密文获取到消息
随着雷达系统工作场合的复杂化、多样化及其对战场感知要求的逐渐提高,人们对雷达分辨力有了更加严苛的要求。由于单载频矩形脉冲信号无法同时大范围提供宽的时域持续时间和大的带宽,因此具备脉冲压缩性能的线性调频(Linear Frequency-modulated,LFM)信号被广泛地应用在现代雷达系统中。为了满足雷达系统对大时宽带宽积(Time-bandwidthproduct,TBWP)LFM信号的要求
高压超快(纳秒、亚纳秒、皮秒)电脉冲是诸多高新技术领域(雷达、大电流点火、加速器、THz技术等)迫切需要解决的关键问题,属于国家重大需求,也是国际科学界的研究重点。光电导开关将超快光学和半导体器件技术相结合,解决了这一难题。传统的光电导开关是由光电半导体芯片结合超快脉冲激光器构成的,已在国际上的前沿科学研究和国防科技等高耗资领域中得到应用。然而,作为光电导开关的触发光源是各种固态脉冲激光器,不仅体
研制高辐射能量、微型的太赫兹源一直以来都是太赫兹技术发展所面临的技术难题。现阶段产生太赫兹波的方式很多,使用半绝缘砷化镓光电导开关作为太赫兹辐射源是一种重要的方法,但半绝缘砷化镓光电导开关工作在线性模式时,辐射的太赫兹波能量较低。半绝缘砷化镓光电导开关工作在雪崩倍增模式时,输出的电脉冲容量远大于线性工作模式,可极大地提高电磁波的辐射强度。本文研究半绝缘砷化镓光电导开关的雪崩倍增工作模式,拟以此工作
半导体的生产对超薄晶片的需求不断增长。但是,在当前的制造工艺过程中,切割工序会造成晶体材料50%的浪费率。为了提高材料利用率并切割出超薄的晶片,探究了利用激光切片工艺来代替机械加工工艺的晶片切片新途径。激光加工比机械加工具有优势,因为它是非接触式工艺,能够减少传统机械加工带来的机器振动和工具磨损,同时,激光加工形成的热影响区非常小,能够满足超薄晶片的加工要求。激光切片方法主要由两步组成,第一步是将
大气能见度是仪器科学研究的重要参量,是研究大气污染的重要因子,反映了大气层的稳定程度,尤其是斜程能见度在航空运输中具有十分重要的地位,它的精确测量对飞机的安全起降有着重要意义。目前激光雷达斜程能见度探测技术主要是基于Koschmieder定律估算斜程能见度,忽略了大气散射辐射亮度的影响。本文从斜程能见度的基本测量原理出发,结合激光雷达的大气探测优势,开展一种新型的激光雷达斜程能见度反演方法和实验研
在谐振腔中激发厄米-高斯(HG)光束然后转换为拉盖尔-高斯(LG)光束是用固体激光器产生涡旋光的一种重要方法,这种方法具有结构简单、模式质量高等优点。本论文通过离轴泵浦固体激光器产生高功率的脉冲涡旋光束。建立了离轴泵浦下固体激光器的多模振荡速率方程模型,通过数值计算,研究了模式分布与离轴量、泵浦光半径和泵浦功率的关系。结果表明:当泵浦光斑半径较小时可以得到单一模式输出,随着离轴量的增加模式依次交替
砷化镓(GaAs)光电导开关(PCSS)是基于脉冲功率技术发展出的一种新型的脉冲功率器件。光电导开关相比于传统开关结构简单、响应快、抖动低、功率容量大、耐压能力高、器件体积小,因此在高功率脉冲发生器,超高速电子学、固态脉冲功率源、高功率超宽带辐射源、THz科学与技术等领域均有广阔的应用前景。为了小型化设备和降低成本,使用激光二极管代替大型激光器触发GaAs PCSS已经成为一个重要的课题。本文设计