氧化还原介质增强MXene基超级电容器储能性能的研究

来源 :哈尔滨工业大学 | 被引量 : 0次 | 上传用户:Chrys0721
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
便携式、小型化、可穿戴电子产品的广泛普及,有力地刺激了柔性、微型超级电容器的快速发展。这类超级电容器以其周期寿命长、能量密度大以及安全性高等优点在人们的日常生活中发挥着重要作用。近年来,MXene因其优异的导电性、丰富的表面化学性质和较高的理论比电容被证明是一种很有前途的用于制备柔性超级电容器的电极材料。本文以Ti3C2Tx(MXene)为主要研究对象,旨在构筑具有高储能性能的MXene基超级电容器,电极和电解质是其最重要的两个组件,因此本文从电极和电解质两方面进行了创新,分别研究了两者对MXene基超级电容器储能性能的影响。由于片层间强的范德华力和氢键作用,在MXene薄膜的组装过程中,剥离的MXene片层之间会发生再堆叠,这就会阻碍电解质离子的浸入,限制了活性位点的充分利用。针对于该问题,本文在180℃溶剂热条件下制备了蒽醌(AQ)修饰的还原氧化石墨烯(AQ-rGO),并利用这种功能化碳材料对MXene进行插层,通过真空辅助抽滤(VAF)法制备了MXene/AQ-rGO复合膜电极。电化学测试结果显示,AQ-rGO的引入不仅可以有效地缓解MXene之间的再堆叠,同时通过π-π堆积接在rGO上的蒽醌分子可以提供额外的赝电容。通过调节AQ-rGO的不同添加量,复合膜的比电容高达328 F g-1,比原始MXene薄膜提高了约18%,电容保持率可以达到68%。工作电解质是超级电容器的另一重要组成构件,本文在PVA/H2SO4凝胶中引入了电活性物质亚甲基蓝(以下用MB代替),制备了氧化还原介质掺杂的PVA/H2SO4/MB凝胶电解质,并确定了最优添加量。用优化的PVA/H2SO4/MB凝胶电解质分别与不同厚度的MXene薄膜组装成了对称型准固态超级电容器,探究了双电极体系下电解质对超级电容器电化学性能的影响,并验证了不同MXene膜厚度对该器件储能性能的影响。结果显示相同电极厚度下。MB/MXene-15超级电容器在0.5 A g-1的电流密度下显示出了58 F g-1的质量比电容,与未添加MB的MXene-15超级电容器的40 F g-1相比提高了约45%,另外研究发现随着电极厚度的增加,这种准固态超级电容器的质量比电容也随之降低,这是由于较厚的MXene膜延长了离子的传输路径,降低了离子的传输速率。
其他文献
全固态电池具有高能量密度、安全性好等优点。但是固态电解质与电极间为固-固接触界面,除了存在较大的界面阻抗的同时,还因为锂金属负极在充放电过程中巨大的体积变化,而导致锂负极与固态电解质界面间接触的不稳定。不稳定的界面接触会造成电池界面间存在大量空隙,大量的空隙会造成电极极化增大,锂枝晶生长加剧等一系列负面影响加剧。在本文中制备出了一种具有高弹性的聚合物电解质PU-LiTFSI-SN来解决固态电池中存
电磁继电器作为电子系统中的关键控制元器件,广泛应用于航天运载器、卫星等航天系统中。随着继电器向着宇航级、高可靠的目标发展,需要实现的不仅仅是满足其可靠开断次数的要求,提升继电器寿命的一致性这一目标也同样重要。在国内现有的设计与制造水平下,仍存在批次产品寿命一致性较差的问题。因此,为了提高继电器工作的稳定性并保证整个系统的可靠运行,本文基于继电器实际加工装配过程,应用稳健性容差设计的方法,对继电器关
由于不需要物理连接,无线电能传输是一种更便捷、更灵活、更安全的功率转换技术。在无线电能传输系统中,耦合系数、负载及输入电压等参数有可能发生变化,系统输出的充电电流/电压随之变化,需要提供有效的闭环控制策略来保持系统输出恒定。在变参数情况下,若系统动态响应能力较慢,系统输出会产生较大的超调/欠调,并且恢复时间较长,将影响系统连接的负载设备的使用寿命,对电机、电池和其他电气设备工作条件有很大的不利影响
集高安全性、低成本、高能量密度、绿色环保于一身的水基锌离子储能器件,在便携式电源和电网储能基站的应用,具有广阔的前景。然而,水基锌离子储能器件的推广使用,仍受到以下因素的束缚,如:正极活性物质的结构坍塌、负极的枝晶生长、Zn负极的不可逆副反应、传统的水溶液电解质无法在低温工作。本论文针对水基锌离子电池中存在的问题,在Zn SO4电解液中加入了N,N-二甲基甲酰胺(DMF),制备了DMF/Zn SO
对于绿色可持续的高比能储能体系的迫切需求,使得具有高理论容量、高能量密度、低生产成本且环境友好的锂硫电池成为理想的储能体系之一,受到海内外研究人员的重点关注。但要推动锂硫电池的实际规模化应用,还面临着诸多有待攻克的挑战性难题,包括了硫及放电产物的本征电导性极差,活性物质在循环过程中存在巨大的体积膨胀问题,放电中间产物长链多硫化锂(Li PSs)存在的严重穿梭效应等。可溶性多硫化物在正负极的穿梭扩散
在21世纪的今天,能源已经成为了国民经济持续发展的关键保障,为了实现未来人类社会的可持续发展,如何开发和利用经济的新型清洁能源存储和转换的设备成为了新世纪能源领域的一个主要研究方向,其中低温燃料电池受到了人们的广泛关注。对于此类的能源转换装置,氧还原反应(ORR)和氧析出反应(OER)又是此类装置中的重要反应,而由于上述两种反应的动力学十分缓慢,这就限制了低温燃料电池的商业化,这使开发高性能的双功
近年来极端事件频发威胁着电力系统的可靠性,而同时新能源的随机性、波动性加大了电力系统的调控难度。提高对风、光出力的预测准确性是在面对当前现状,有效指导调度规划,为可调资源的启用提供预警时间,从而提升电网弹性,减少弃风弃光、促进能源消纳的重要手段。因此通过提升这种超短期感知调节能力配合常规电源进行调节具有其必要性。另一方面,大数据和人工智能的兴起为研究提高预测精度提供了新的思路和工具支持。当前电网高
新能源电动车和储能产业的蓬勃发展带动了锂离子电池需求暴涨。在锂离子电池市场中尤其是车用锂离子电池,三元的镍钴锰系电池兼具成本和能量密度的优势占据了大量的市场份额。退役的车用三元电池也可探索用于规模储能。提高三元电池中镍含量的比例能实现更高的能量密度,然而镍含量占比的升高造成正极材料的合成难度上升,高温下更容易发生阳离子混排,降低了锂层中活性锂的含量。此外镍含量增加,高稳定性锰含量的减少也使电池的循
锂硫(Li-S)电池因为具有非常高的理论比容量(1675 m Ah g-1)和理论能量密度(2600 Wh kg-1)成为了最有发展潜力的下一代储能设备之一。但基于电池的工作原理,Li-S电池面临着自身的诸多问题,其中多硫化物的穿梭效应严重的阻碍了Li-S电池的商业化进程。因此,解决多硫化物的穿梭效应是Li-S电池的研究中的重中之重。基于此,本论文分别从尺寸筛分和催化两方面对抑制多硫化物穿梭效应。
微生物燃料电池(Microbial Fuel Cells,MFCs)是一种利用产电的微生物催化分解阳极中的有机物将化学能转换成电能的一种绿色环保无污染的装置,为当前面临的环境危机和能源危机提供了一种解决的思路。然而目前微生物燃料电池的应用还受到很多方面的限制,比如产电效率低,成本高等诸多因素。其中阳极材料的性能是影响微生物燃料电池性能的关键因素。过渡金属氮化物具有贵金属的导电性以及优异的电催化活性