基于红外大气窗口的微纳结构辐射特性调控研究

来源 :华中科技大学 | 被引量 : 0次 | 上传用户:galahad55
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
红外大气窗口作为电磁波频谱中的波段,在红外测温、成像、热伪装、夜视、辐射制冷等军民领域有着广泛的应用,近年来结合纳米材料、量子物理和微纳加工制造技术的发展更是使相关领域焕发出新的生机。非制冷式测辐射热计作为红外探测器的重要分支,对宽谱带、高吸收的超薄吸收器提出需求。辐射制冷作为解决能源问题的重要可行方案,在如何进行有效的动态调控等方面存在着难题。超材料的兴起及其与相变材料的结合给这些问题提供了解决思路。本文基于红外大气窗口波段,利用表面等离激元效应及相变材料,开展了对超材料吸收(辐射)器的优化设计和分析工作。首先,针对非制冷式测辐射热计的吸收器设计了两种周期性椭圆表面的Ti/Ge/Doped-Si/Ti四层结构超材料吸收器,其中单椭圆吸收器可以在8.8~12.5μm波段范围内实现90%以上的高吸收率,平均吸收率可达96.5%,在9.43μm和11.65μm处存在两个峰值吸收率分别为98.8%和98.9%的吸收峰值。四椭圆吸收器可以在红外探测工作波段8~15μm宽谱带范围全部实现80%以上的吸收率,波段平均吸收率可达89.5%。对电磁场和光热转换空间分布的进一步分析揭示了其宽谱高吸收的机理。对超材料吸收器结构参数和偏振、入射角度等的敏感性分析为设计制备提供了理论依据,最后还结合近场辐射传热的机理分析了间距对热噪声的影响。其后,结合相变材料基于辐射制冷的动态调控设计了三种超材料发射器,相变前的超材料发射器在长波红外波段具有宽谱高发射率特性,通过相变材料的相态转变可大幅调整发射器的发射率,在8~13μm辐射制冷波段两种相态的平均发射率之差最高可达51%,可以对辐射制冷、热红外伪装等起到主动调控的作用。对不同偏振、不同入射角下吸收率的分析,发现在入射角度20°以下时发射特性基本没有变化。
其他文献
分布式发电系统作为开发和利用可再生清洁能源的重要途径,现如今已成为了推进能源结构绿色化、低碳化的重要驱动力。其中,并网逆变器作为分布式发电系统中的能量转换接口,其正常稳定的运行是提高系统供电可靠性的关键所在。尽管LCL型并网逆变器能在减轻滤波器体积的同时具备良好的输出性能,但其固有的谐振特性将给系统的稳定性带来新的挑战。因此,本文基于当前的研究现状,对LCL型并网逆变器的谐振抑制方法和并网电流控制
全混合日粮(TMR:Total Mixed Ration)的合格性判断是现代奶牛养殖业由分散化养殖向规模化、集约化养殖转化过程中的重要环节,加工合格的全混合日粮可以降低牛场成本,提高产奶量,具有重大的商业价值和研究前景。当前关于TMR合格性判断的分类研究主要由人工进行操作,传统方法耗时费力。因此,本文对智能化TMR分类在线检测系统的关键技术进行研究,来解决传统方法判断TMR合格性的不足。下面对本文
体异质结的使用和热延迟荧光材料的出现分别有效地提高了有机热电和发光器件的效率,并且使用它们制备的器件,内部载流子的电荷自旋耦合作用和自旋相互转化机制也更为独特和丰富。但是对于自旋如何提高器件性能的研究工作却仍然不够完善。本论文以体异质结热电器件和热延迟荧光器件为研究对象,通过调控外部磁场或铁磁材料的厚度,探究了器件热电、吸收、发光、磁场效应及铁磁共振等性能的变化。并进一步将实验结果与自旋电荷理论模
神经元重建是指通过特定的标记技术、成像技术和特定的追踪算法或工具实现神经元形态结构的数字化。数字化的神经元信息展现了神经元在脑中的分布与具体形态结构,并被应用于神经细胞分类、神经元输入输出投射、神经环路等研究。为了进行神经元重建,需要先对模式动物如小鼠在全脑范围内进行亚微米水平的成像。但由于极高的体素分辨率与较大的成像范围,用于神经元重建的全脑数据集数据量高达10 TB,给神经元重建工作带来了巨大
随着科学技术的不断进步,机器人对社会发展和国家富强具有不可替代的关键性作用。目前机器人在各个领域的应用场景越来越广泛,这也对机器人的智能化提出了更高的要求。人们希望机器人在复杂的未知环境中可以高效稳定地完成任务,这就要求机器人具有较高的自主学习和决策能力。随着人工智能的不断发展,强化学习由于在决策方面具有超人类的性能,吸引了广大机器人学者的关注。模仿学习是强化学习的一个分支,本文就基于逆向强化学习
研究背景和目的:髓系来源的抑制细胞(MDSCs)是未分化成熟的、异质性的髓样细胞群体,具有免疫抑制功能,被证实在肿瘤和慢性炎症中大量募集。但迄今为止,MDSCs对自身免疫性心肌炎的影响尚不清楚。本研究旨在探讨MDSCs在自身免疫性心肌炎中的作用及其机制。方法和结果:1.MDSCs在自身免疫性心肌炎中的募集和免疫抑制作用自身免疫性心肌炎小鼠骨髓、外周血、脾脏及心脏中MDSCs的募集增多,且以G-MD
研究水下高速兵器已经成为各国提升自身军事实力的重要途径,发展水下兵器的最大阻碍之一来自于航行时的阻力。弹体在水下航行时,所受的阻力不仅仅会使其速度迅速下降,甚至会大大降低武器的杀伤能力,而超空泡技术可以很好的解决这一难题。本文对弹体的自然超空泡流和通气超空泡流均进行了研究分析。首先,对简单模型的无关性进行了验证。在此基础之上,通过自然超空泡和通气超空泡两种工况,对比分析了湍流模型以及算法对数值计算
电弧增材制造(Additive manufacture,AM)作为一种新型的构件成形方法,比激光增材制造成形效率高、与铸造、锻造成形方法相比,无需模具、可成形结构复杂的大型金属构件,广泛地应用于航天、航空、船舶大型金属结构件等个性化产品的制造。电弧增材制造成形的高性能大型金属构件,不仅应该具有良好的组织结构和力学性能,而且其成形尺寸和形状均要严格地满足要求。为此,搭建了激光电弧复合增材制造系统,研
在全球石化资源大量消耗、储量堪忧,全球范围内能量存储系统规模逐渐扩大的大背景下,发展高性能储能电池是推进新能源高速发展的必经之路。负极材料作为储能电池的重要组成部分,其工作电压、比容量、结构稳定性直接影响着电池的整体性能。然而,商用石墨负极存在高电压迟滞现象和较高的不可逆容量,严重限制了电池能量密度和整体性能的提升。金属氧化物(MO)、金属硫化物(MS)和金属硒化物(MSe)由于具有较高的比容量和