【摘 要】
:
钢铁工业是许多国家最重要的基础产业之一,而工厂的自动化流水生产线对提高钢筋的生产率起着至关重要的作用。目前国内钢筋生产厂商还是采用人工对钢筋进行分离和计数的方式,现场的工人只能采取简单的防护设备对钢筋进行捆包装和计数。这种方式的缺点是工作效率低且计数的误差较大,因此,利用数字图像处理技术实现钢筋端面中心点检测和计数,可大幅降低他们的劳动强度,提高生产效率。基于深度学习算法,针对不同的应用场景,本文提出了两种钢筋端面中心点检测和计数算法。
第一种方法,首先用CNN检测钢筋端面候选中心点。在此基础上
论文部分内容阅读
钢铁工业是许多国家最重要的基础产业之一,而工厂的自动化流水生产线对提高钢筋的生产率起着至关重要的作用。目前国内钢筋生产厂商还是采用人工对钢筋进行分离和计数的方式,现场的工人只能采取简单的防护设备对钢筋进行捆包装和计数。这种方式的缺点是工作效率低且计数的误差较大,因此,利用数字图像处理技术实现钢筋端面中心点检测和计数,可大幅降低他们的劳动强度,提高生产效率。基于深度学习算法,针对不同的应用场景,本文提出了两种钢筋端面中心点检测和计数算法。
第一种方法,首先用CNN检测钢筋端面候选中心点。在此基础上,提出了一种距离聚类(DC)算法来聚类候选中心点定位钢筋的中心。该方法适用于固定场景的钢筋端面中心点检测及计数,如相机拍摄钢筋端面的距离和角度几乎不发生变化的场景。仿真结果表明,CNN-DC算法可以实现99.26%的钢筋计数精度和4.1%的中心偏移量。
第二种方法,基于卷积神经网络的密度估计对钢筋图片进行识别,并通过编码器和解码器得到钢筋的单一特征图,对预测的密度图进行积分实现钢筋端面中心点的检测和计数功能。该方法适用于复杂场景下的钢筋端面中心点检测及计数。仿真结果表明,基于卷积神经网络的密度估计算法可以实现94.03%的钢筋计数精度和5.61%的中心偏移量。
将本文的两种方法与传统方法对钢筋数据集的实验结果对比可以看出,本文中的两种方法在识别钢筋端面中心的偏移量,计数准确率等指标上均比传统方法的表现力更好。
其他文献
概率问题一般与实际生活息息相关,侧重于考查同学们的应变能力和综合分析能力.常见的概率模型有三种:古典概率模型、几何概型概率模型、条件概率模型.那么如何求解這三种概率问题呢?下面我们一起来讨论. 一、古典概率模型 总之,古典概型、几何概型、条件概率问题都是常见的概率问题,且每一种概率模型都有其不同的特点和概率公式.在解题时,同学们要首先明确问题属于哪一种概率模型,然后运用与之相应的公式进行求解.
数列不等式问题比较复杂,对同学们的逻辑思维能力和运算能力的要求较高.很多同学在解题的过程中找不到恰当的方法,常常因为复杂的计算浪费了大量的时间.那么,如何选择最佳的途径来解题呢?本文结合一道例题,谈一谈解答数列不等式问题的三个途径,以帮助同学们拓宽解题的思路. 例题:已知函数,,证明:.本题看似与函数有关,实质上是一道数列不等式证明题.我们要先根据已知的函数式将目标不等式化简为数列的形式,然后仔
一节优质语文课往往有一个好的课前导入。好的课前导入能吸引学生的注意力,激发他们的学习兴趣,为后续的教学作铺垫。下面,笔者就谈谈导入新课的几种方法。 一、适时迁移 在导入新课的过程中,教师可以适时迁移,引导学生回顾已经学过的旧知识或课文,再为他们介绍新知识或新课文,让他们将新旧知识、新旧课文联系起来。这样导入会让他们对将要学习的知识产生一种熟悉感。 比如,在讲解李清照的《声声慢·寻寻觅觅》之前
解答不等式证明问题的方法有很多种,如比较法、分析法、综合法、换元法、反证法、判别式法等.如何选择合适的方法来解题呢?下面,我们结合实例来探讨一下换元法、反证法、判别式法的应用及适用范围. 一、三角换元法 运用三角换元法证明不等式,需用三角函数式,如sinθ、cosθ等代替某些代数式,将不等式转化为三角函数式,借助三角函数的有界性证明结论.在换元的过程中,要注意确保定义域的等价性,并用θ的范围来
由遞推式求数列的通项公式问题在数列问题中比较常见,此类问题的命题方式多种多样,很多同学在解题时往往找不到正确的解题方法,导致无法得出正确的答案.事实上,对于较为复杂的递推式,我们一般采用构造法来求数列的通项公式,下面介绍两个构造数列的技巧,以帮助同学们破解此类难题. 通过上述分析同学们应该发现,对于较为复杂的递推式,采用构造法来求数列的通项公式往往更有效.因此,同学们要善于观察递推式,将其进行合
与圆锥曲线有关的最值问题,侧重于考查圆锥曲线的方程、圆锥曲线的几何性质、三角形的面积公式、弦长公式等.本文以一道题目为例来谈一谈解答圆锥曲线最值问题的两种途径. 可见,要顺利求解圆锥曲线的最值问题,我们不仅需掌握各种求最值的途径,還要学会灵活运用函数思想、数形结合思想、方程思想、转化思想来辅助解题. (作者单位:山东省东明县第一中学)
圆锥曲线问题一般综合性较强、运算量较大,是同学们比较头疼的问题.下面,笔者以一道题为例,谈一谈如何从不同的角度寻找解答圆锥曲线问题的思路和方法. 虽然圆锥曲线问題难度较大,但是同学们只要学会迁移知识,将相关的知识关联起来,运用发散性思维,从方程、向量等多个角度去寻找解题的思路,便能优化解题的方案,提升解题的效率. (作者单位:江苏省大丰高级中学)
数列求和问题是高中数学中的重要内容,常常出现在各类试题中.很多同学在解题时常常无法找到正确的解题方法,导致解题失败,对此,笔者总结了三种求数列和的方法,以帮助同学们顺利应对数列求和问题. 、分组求和法 分组求和法是将数列拆分为几个等差、等比、常数数列,然后分组进行求和的方法.对于形如的数列,我们常用分组求和法来求数列的和.在运用分组求和法求和时,要首先仔细观察数列的递推式,找出各项之间的关系,
随着中国制造业响应市场需求进行产业升级的发展,工业机器人的智能化普及成为了未来制造业崛起的关键力量。而当前应用于工业生产的机器人生产线普遍采用传统基于人工拖拽的示教编程的方式调整机械臂的运行轨迹,这种方式复杂耗时并且对操作人员的要求较高。提高机器人的智能化通常需要增加传感器收集空间信息,对这一发展方向,本文中的系统借助深度相机组成的深度视觉系统,无需传统编程示教即可快速的设置工业机器人移动轨迹并且降低了操作工人的使用门槛,能够极大地便于工业生产线的调整,为机器人产业的进一步智能化集约化提供了参考。本文主要
心脏病是全世界目前致死率最高的病例之一,涵盖的年龄范围从青少年到老年均有,对人的健康构成极大威胁。如果提前检测和评估心脏功能能做到早发现早治疗,所以在医学领域上面,心脏的评估检测是目前一个特别重要的分支,每年大量的资源投入到其中进行研究。据麦姆斯咨询报道,全球心脏监测和心律管理设备市场预计将从2017年的206.7亿美元增长至2022年的251.2亿美元,预测期内复合年增长率为4%。其中设备研发过程中最重要的一环是如何在超声心动影像图中对心脏心肌的运动矢量进行准确的追踪,从而分析心脏心肌的功能。