基于RNA-seq技术解析NO延缓葡萄果梗采后褐变的作用机理

来源 :石河子大学 | 被引量 : 0次 | 上传用户:wangxiaofengkobe
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
葡萄果梗褐变是造成鲜食葡萄果穗品质下降的第二大重要问题,也是鲜食葡萄贮藏新技术发展的主要障碍。为了改善葡萄采后果梗褐变问题,本文以新疆主栽品种“Thompson Seedless”无核白葡萄为研究试材,通过NO熏蒸技术筛选适宜浓度后,采用RNA-seq技术探索了果梗褐变相关的主要代谢途径、通路及其基因,根据NO响应差异和基因功能验证并确定候选基因,以苯丙烷代谢途径为重点,探讨葡萄果梗褐变发生规律及其调控机制,旨在为NO在葡萄采后贮藏技术领域的应用提供科学依据和实验数据。主要结果如下:(1)筛选并优化了NO熏蒸浓度。NO气体熏蒸处理具有延缓葡萄果梗褐变、维持葡萄果粒品质的生理作用,但NO浓度低于300μL·L-1发挥作用有限,400μL·L-1~600μL·L-1时抑制果梗褐变的作用效果明显,大于900μL·L-1时反而有伤害作用。分析贮藏效果发现,NO可有效降低葡萄失重率、落粒率、腐烂率,减缓葡萄果粒硬度、可溶性固形物和总酸的下降,其中500μL·L-1NO熏蒸浓度显著减缓了葡萄果梗电导率的增加,抑制了叶绿素降解和花青素的积累,尤其延缓了叶绿素a向叶绿素b的降解速度,降低了果梗黄化速度,但对黄酮类含量影响不显著;该浓度的NO处理不仅减少了果梗表面裂纹数量和开裂强度,而且有益于内部细胞排列紧密、骨架完整的形态的保持,从而减轻了局部组织的凹陷程度;减缓了木质部中的无机物的消耗,从而延缓了细胞结构的破坏。组织染色分析发现,NO维持了果梗表皮细胞的体积,减缓了细胞壁增厚和木栓化,抑制了表皮棕色物质的积累。(2)RNA-seq测序表明,贮藏期间的葡萄果梗mRNA的转录变化明显,且NO处理对其影响作用显著。不同贮藏阶段的葡萄果梗共表达基因有12869个,在采收10 d时,上调基因数占总差异基因的72.35%,下调基因数占总差异基因的27.65%。与采收时相比,贮藏10 d时处理组和对照组的差异表达基因合计有759个,而共有差异基因62个,靠前的32个基因qPCR表达验证显示,有20个基因表达特性突出,其中PAL1,PAL3-5,PPO1-3,POD1,POD4-7和转录因子WRKY53,ERF003,MYB39表达量明显高于PAL2,POD2-3和转录因子b HLH96,ERF095。而NO处理均对上述基因有不同程度的调控作用,尤其在冷藏5 d~25 d和货架前两天的作用较为明显。(3)GO、KEGG和蛋白富集表明,苯丙烷代谢途径与葡萄果梗褐变进程关系紧密,主要涉及PAL、PPO和POD家族基因。RNA-seq数据表明,有365个DEGs参与了50个代谢途径,主要分布在代谢过程,占总DEGs的81.10%(296个),而且被DEGs富集的主要途径有苯丙素生物合成途径,占比为11.82%(35个);其次为苯丙氨酸代谢途径,占比为9.80%(29个);紧随其后的还有植物激素信号转导途径、黄酮类合成途径;富集到前2条的DEGs占代谢类总条目的21.62%(42条),成为主要富集方向。另外,排名前三的通路依次为苯丙素生物合成途径(KO00940)、苯丙氨酸代谢途径(KO00360)和黄酮类生物合成途径(KO00941)。结合基因功能选则与果梗褐变相关的苯丙烷代谢途径为转录分析重点,候选基因有9个,即VvPPO1-3,VvPAL1-3和VvPOD1-3。(4)相关性分析表明,果梗褐变指数和PPO活性变化与理化品质、候选基因变化特点紧密相关,且不同基因表达特性差异显著。其中褐变指数与酚类含量、POD、VvPAL1和VvPOD3存在显著相关,与失水率、PPO、VvPPO1和VvPOD1存在极显著相关。同时,PPO与VvPOD1呈显著相关,与VvPPO1呈极显著相关。比较发现,普通采后果梗中VvPPO1表达显著高于VvPPO2(7.05倍)和VvPPO3(5.56倍)。VvPAL2显著高于VvPAL1(5.12倍)和VvPAL3(2.13倍)。VvPOD3显著高于VvPOD1(4.35倍)和VvPOD2(21.81倍)。因此,葡萄果梗中VvPPO1、VvPAL2和VvPOD3可能是其家族基因中表达量较高的基因。(5)转录调控研究表明,NO熏蒸处理诱导苯丙烷代谢的调控作用显著。主要体现在500μL·L-1NO延缓了葡萄果梗中水分损失、减少了酚类物质积累、抑制了PPO和PAL活性、诱导了POD活性增加;下调了基因VvPPO1、VvPAL2和VvPAL3的表达,上调了VvPOD3的表达;VvPPO1-3表达谱表明,VvPPO1是一个重要基因,NO处理对VvPPO1有显著的抑制作用(P<0.01),但对VvPPO2和VvPPO3作用不显著。结果表明,VvPPO1在果梗褐变产生和控制方面起到了至关重要的作用,可能是VvPPO家族中与果梗褐变有关的关键基因。(6)生物信息学分析和亚细胞定位观察表明,VvPPO1具有酪氨酸结构域,在叶绿体上行驶功能。VvPPO1全长为2010bp,包含2007 bp ORF,编码668个氨基酸残基,分子式为C3346H5215N909O987S23,原子总数为10480,分子量为74.71KDa,理论p I为6.64,具有跨膜特性,没有信号肽,半衰期为30 h,定位于叶绿体中;与Vitis vinifera“Shine Muscat”(BAO79387.1)亲缘关系较近,相似度大于99%;序列提交至Genbank数据库,获得基因登录号为MN164611。
其他文献
对许多小学生来说,练字是一件枯燥乏味的事情,如何使学生变被动为主动,合适的教学方法的运用尤其重要。对比教学法,可以让学生抓住事物的异同性进行比较,从复杂的现象中迅速抓住实质。笔者结合实践研究表明,在小学书法课程中运用对比教学法进行教学,可以达到如下目标:养成读帖好习惯,激发学生乐于写好字的兴趣;形成良好的书写意识,培养学生写好字的能力;培养审美鉴赏能力,提升学生的书法素养。
唐代是铜镜发展的繁荣时期,金银平脱宝相花铜镜是唐代最具代表性的铜镜之一。从设计美学的角度审视,金银平脱宝相花铜镜蕴含着技术美、纹样美、造型美。在观照唐代社会现状、了解唐代历史文化的基础上,探索唐代金银平脱宝相花铜镜的文化内涵和设计美学,对于当代器型的设计理念及工艺设计有一定的启示意义。
清代青花宝相花八吉祥纹尊高49.5厘米,口径长19.7厘米,足径为21.5厘米。该尊为侈口,束颈,鼓腹,圈足。尊颈部饰缠枝宝相花,肩部饰八吉祥图案,腹下部绘有仰莲瓣纹,口沿和圈足饰海水江牙,共有八组纹饰组成整体画面。宝相花是一种具有象征意义的花,它集中了莲花、牡丹、菊花的特征,经过艺术处理后变得更圣洁、更端庄、
期刊
番茄(Solanum lycopersicum)是世界种植最为广泛的蔬菜作物之一。番茄生产过程中容易遭受各种生物和非生物胁迫,对其产量和产品质量都造成了严重影响。栽培番茄是一种喜温作物,低于13℃的温度下生长发育缓慢、叶片萎蔫,还可能造成落花落果,果实畸形等。因此,低温是影响番茄分布、生长发育和生产力的主要非生物因素之一。此外,番茄生产还经常受到灰霉病菌(Botrytis cinerea)等生物因
哈密瓜营养丰富,素有“瓜中之王”的美称。新疆哈密瓜依赖着独特的地理位置和生态环境资源造就了优质的品质。新疆哈密瓜总产量约占全国哈密瓜产量半数以上,但在全国甜瓜中的竞争优势正在快速下降。哈密瓜属于新疆特色水果,对其开展采后品质检测有助于维护好新疆哈密瓜区域品牌的地位,并提升在国内外市场的竞争力。本论文立足新疆瓜果产业发展需求,系统性地开展了针对哈密瓜关键指标糖度和脆度的无损检测方法研究。主要研究内容
目的:膜下滴灌技术形成的灌水-蒸发空间不均匀作用使农田土壤呈现“水盐空间交错”的分布状态,土壤盐分主要聚集在膜外位置,在蒸发作用下形成盐分表聚特征,减弱了灌水对膜外土壤盐分的淋洗;而膜下滴灌条件下农田土壤产生盐分表聚与盐分淋洗现象共存的这一事实,使土壤盐分表聚量与盐分淋洗量之间存在一定的比例关系。本文通过室内物理试验及田间试验的验证,研究了水汽两相流作用下土气界面盐分的结晶过程,讨论了膜下滴灌条件
绵羊是一种非常重要的家养动物,利用基因修饰手段来改良或育种是一个方向。目前利用转基因技术进行分子育种,存在较难控制外源基因与效率较低等问题。基于小鼠胚胎干细胞(ESC)的基因打靶技术能进行精确有效的敲入或敲出。由于绵羊ESC很难分离获得,利用同样具有多能性的诱导多能干细胞(iPSC)代替ESC进行精确遗传工程操作成为目前急需解决的问题。目前绵羊的iPSC存在诱导效率低,难以获得完全重编程的iPSC
牛病毒性腹泻-黏膜病(Bovine viral diarrhea-mucosal disease,BVD-MD)是由牛病毒性腹泻病毒(Bovine viral diarrhea virus,BVDV)感染引起的一种重要的牛传染性疾病,其隐秘性、长时间一过性感染以及持续感染动物形成的病毒存储库使得BVD-MD在全球牛群中肆虐,给世界养牛业造成了巨大的经济损失。NCP(noncytopathic)BV
西尼罗病毒病(West Nile virus disease,WND)是由西尼罗病毒(WNV)经蚊虫叮咬感染动物和人的、以西尼罗热(WNF)和西尼罗脑炎(WNE)为主要临床症状的人兽共患传染病。自1999年在美国纽约暴发以来,每年均有动物和人感染发病。据美国动植物卫生检验局(APHIS)统计,2002年美国确诊了12 527例马匹感染,为历史最高。针对传染性疾病,疫苗是最有效的防治手段之一。当前已
近年来气候变化导致极端天气增多,全球人口不断增长给农业生产带来了前所未有的挑战,粮食安全是国家安全的重要基础。作物遗传改良能够促进粮食和营养安全,已经成为科学家关注的重要问题之一,但目前作物育种策略缺少足够的效率,还难以满足短期或长期的粮食生产需求,需要将传统育种、现代生物技术、基因组学研究与“speed breeding”(加速育种)相结合加速作物改良进程,帮助我们应对100亿人口粮食需求的挑战