高功率窄线宽掺镱全光纤超荧光源光谱合束

来源 :北京工业大学 | 被引量 : 1次 | 上传用户:leunggz
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
作为固体激光器的一种特殊形式,光纤激光器具有结构紧凑、能量转换效率高、光束质量好、抗环境干扰能力强等优点,现已广泛应用到激光加工与制造、通信遥感、科研医疗、军事国防安全等领域中。随着大模场面积双包层光纤的出现、光纤元器件及高功率二极管泵浦源的制造技术日趋成熟,利用大模场面积光纤降低光纤激光器非线性效应,可实现单根光纤万瓦级输出功率,但光束质量并不理想,且在高功率运转条件下,由于光纤熔点损伤及掺杂光纤热损伤等因素限制,使得输出功率难以大幅提高。利用高功率窄线宽光纤光源实现光谱合束可作为突破单根光纤最高输出功率瓶颈的一种手段,来获得具有良好光束质量的高功率激光输出。但窄线宽光纤激光器在高功率条件下容易产生受激布里渊散射,超荧光源兼具激光与荧光特性,是一种具有无自脉冲、无弛豫振荡、无模式竞争和极高时间稳定性等突出优点的新型高亮度光纤光源,通过光纤放大器容易获得稳定的高功率输出,并且具有很高的受激布里渊散射阈值,这使得窄线宽超荧光光源在高功率光谱合束技术中更具备应用潜力。本论文主要对窄线宽光纤超荧光光源和超荧光光源的光谱合束展开了系统的研究,通过实验初步论证利用超荧光光源实现光谱合束的可行性,主要包括以下内容:(1)对窄线宽全光纤掺镱超荧光光源进行了实验研究。实验利用环形器和光纤布拉格光栅(FBG)对同一宽带超荧光种子源滤波,获得3 dB带宽均为0.05nm,中心波长分别为1060 nm和1078 nm两路窄线宽超荧光种子源。(2)利用主震荡功率放大结构掺镱光纤放大器对两路窄线宽超荧光种子源放大,采用20/130掺镱双包层光纤作为主放大级增益介质,获得了57.4 W(中心波长1060 nm)和56.6 W(中心波长1078 nm)的窄线宽超荧光输出,光谱3dB带宽均为0.05 nm。利用透射式衍射光栅所获得窄线宽超荧光光源实现光谱合束输出。在最高输出功率水平下,获得了104.2 W的超荧光合束输出,合束效率分别为91.3%。(3)为获得更高功率的窄线宽超荧光输出,通过更换主放大级结构,利用20/400掺镱双包层光纤作为主放大级增益介质,获得了两路输出功率均为225.8W,中心波长分别为1060.26 nm和1078.67 nm,光谱3 dB带宽在高功率放大过程中出现了轻微展宽,两路窄线宽超荧光光源3 dB带宽分别由0.042 nm和0.052nm展宽至0.07 nm和0.063 nm。利用透射式衍射光栅对所获得高功率窄线宽超荧光光源进行光谱合束,获得最高为406 W的超荧光合束输出,合束效率87%。以上两组窄线宽超荧光光源输出中心波长均未出现偏移,合束光束质量较单路超荧光光源光束质量未出现明显恶化。
其他文献
光声成像技术作为一种新型无损成像技术,已经受到了社会各界的广泛关注,因为它重建出的图像对比度和分辨率都很高,而在整个工作流程中,超声信号准确无误的接收是非常重要的一
本文用一种新的思维方式——熵思想来分析和描述熵在军事教育组织系统中的特征表现,从一个新的视角提出了军事教育组织系统运行效率改进方法和途径。论文第一章简要介绍了熵
生命教育课程作为内容依据和指导纲目,对维系生命教育的持续推动有莫大的关系,我国有些地区已经颁布了实施生命教育的纲要或者教育草案,但是在原本课程科目早已拥挤不堪、各科竞
近年来,位于光伏上游的多晶硅产业,因产能过剩遭遇寒潮,国内多晶硅产业受到严重的冲击,除了国外多晶硅生产巨头冲击国内市场的因素外,其根本原因还是自身核心技术不够成熟,导
近些年来,无线通信技术得到了飞速发展,以满足各个行业的不同需求,北斗卫星导航系统(BeiDou Navigation Satellite System)也是其中一个重要的应用。与此同时,CMOS工艺的迅速
在岩土工程施工中,随着我们施工技术能力的不断提高,岩土工程方面的施工能力也取得了长足进步。但仍然存在诸多技术难点,需要岩土从业人员采取相应措施去解决。
模数转换器即A/D转换器(或简称ADC),作为连接模拟电路和数字电路的桥梁,常被应用于雷达、图像传感和手机触摸屏等领域。在常见的ADC转换结构中,逐次逼近型模数转换器(Success
2016年10月,习近平总书记在全国国有企业党的建设工作会议上的重要讲话,明确了坚持党的领导、加强党的建设,是国有企业的“根”和“魂”。$$国网河北省电力有限公司党委始终把深
报纸
甚低频(VLF)电磁波是地球-电离层波导中传播的电磁波,其传播衰减小,穿透性强,在远距离通信、全球雷电分布和空间天气事件监测等方面被广泛应用。VLF电磁波受电离层参数变化的
说起海洋经济,人们首先想到的就是渔业。渔业是海洋经济重要的组成部分,而现代渔业则是将传统渔业与机械装备、物联网、云计算、大数据等机械工程、现代信息技术深度融合,使