基于深度学习的换向器产品质量检测

来源 :广东工业大学 | 被引量 : 0次 | 上传用户:jijianbing520
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
产品质量检测是工业生产制造过程中的重要环节。传统人工提取特征算法在换向器产品质量检测中存在各种不足,无法满足自动质检要求。为解决此问题,本文探索深度学习方法检测换向器侧面划痕缺陷和端面缺料缺陷,深度学习方法能够自动提取特征,其泛化能力强,期望比传统视觉算法有更好的检测稳定性与准确度。本文主要的工作如下:(1)为解决换向器侧面划痕多尺度检测和细小划痕检测两个问题,提出基于编码器-解码器结构的语义分割框架RUDMNet,RUDMNet由编码器、解码器、可变形空洞空间金字塔池化(Deformable atrous spatial pyramid pooling,DASPP)、多重低层特征融合(Multiple low-level features fusion,MLFF)组成。编码器进行特征提取,解码器阶段通过多次特征融合,逐渐恢复缺陷细节。针对多尺度检测,提出改进ASPP的DASPP模块,划痕缺陷需要较强的形变检测能力,DASPP由可变形卷积与ASPP融合而成,因此DASPP能够获取多尺度特征同时具有较强的几何形变建模能力。针对细小划痕问题,采用MLFF处理细小划痕检测问题,因为细小缺陷信息在低层语义中信息更为丰富,因此解码器阶段融合多重低层特征,融合丰富的细小缺陷特征,提升对小划痕的分割结果。(2)换向器端面低对比缺料特征与背景纹理非常相近,灰度值相差小,即低对比缺陷检测问题。并且低对比缺料缺陷特征在实际生产过程中此缺陷出现频次较少,难以收集较多低对比特征缺料缺陷的图片,常规随机采样训练网络时,网络训练过程中的优化方向会更关注样本数量多的缺陷特征。为解决低对比缺料缺陷问题,提出两阶段式训练策略解决换向器端面低对比缺料缺陷检测问题。第一阶段训练常见缺陷,第二阶段训练时在分割网络中增加注意力机制,注意力模块更关注于低对比缺料缺陷,用作生成低对比缺陷特征图,并采用平均Top-K Loss使网络在训练过程中可以更好的专注数据量比例低的低对比缺料缺陷样本,提升对低对比缺陷缺陷的分割结果。(3)根据真实工业环境采集的换向器侧面和上端面数据集,并对数据集做预处理后作为实验对象,对本文提出的方法进行验证。换向器侧面划痕缺陷检测实验中将我们的方法与其他流行的语义分割网络的方法进行对比,根据实验结果,我们的方法RUDMNet在换向器侧面划痕缺陷测试集上达到m Io U为73.97%,ACC为98.04%。换向器端面缺料检测中我们对比一阶段与两阶段的训练效果,验证了采用两阶段训练策略对端面低对比缺料缺陷有更好的分割效果,采用两阶段训练策略在上端面缺料缺陷测试集上能达到m Io U为76.27%,ACC为95.17%。
其他文献
商标作为知识产权中重要的一环,在社会经济发展中发挥着无可替代的作用。作为商品和厂家的重要标志,商标不仅象征着商品的质量,也代表了商家的名誉,因此受到越来越多的重视。与此同时,随着商标图像数量的爆炸性增长,如何有效且高效地对商标进行检索已然成为知识产权保护和应用领域的难题。现有的商标检索方法还存在数据标注成本高、有效特征提取难等问题,为了更好地学习商标特征信息,获得更好的检索结果,本文提出了一种基于
随着“中国制造2025”、“制造强国战略”、“再工业化战略”等制造业相关政策的提出,信息化制造成为了各个制造企业关注的重点。各企业进行信息化建设与信息化管理的目的都是为实现低成本、高效率地完成制造生产任务,实现生产计划与制造作业执行之间的高度同步。现阶段,市面上大部分的制造执行系统可以实现制造企业的制造资源管理需求。但随着全球市场经济竞争的加剧,企业在制造管理的红利已经挖掘殆尽,定制化生产的时代到
心血管疾病是导致人类死亡的首要病症,而心脏活动状况通常可以反映身体的病理信息。心音是由心脏瓣膜突然关闭或湍流而产生的,其是评估心脏功能的重要线索。目前,听诊器是心血管疾病临床上常用的诊断用具,其在采集心音时,易受环境噪声和体内伪迹(如肺音)的干扰,从而影响医生听诊有效性。由于对心脏准确听诊需要广泛持久的训练,因此利用计算机辅助心音分析是非常有必要的。对此,本文提出基于注意力机制的卷积神经网络(Co
随着同时定位与地图构建(Simultaneously Localization And Mapping,SLAM)技术的广泛应用,如何使定位的结果更加精确,这项研究逐渐成为近几年的热点内容。RGBD相机能提取到图像中的彩色信息与深度信息,在光照变化较大、快速运动、纹理缺失的场景下仍能测距,但是在复杂环境下,系统易出现误匹配、定位不准确等问题。针对上述问题,本文基于Kinect相机构建了一种融合点线
随着智能家居概念不断深入人心,智能音箱和路由器作为家居设备在人们日常家居生活场景中扮演着至关重要的角色,但是在日常使用中音箱仅作为家庭影音的娱乐服务型终端存在,路由器作为服务终端用户也大多数是仅使用其发射出的无线信号进行上网,对其剩余资源是一种浪费,并且两者在家居场景是相互独立的个体。在本文中结合校企合作项目《新一代智能无线音箱系统的研发》,将家居场景中的音箱和路由器这两个相互独立的个体整合设计成
随着我国工业技术的发展,用电需求急剧增加,加快了我国电力技术的发展。在实际应用中传统变电技术存在着众多的问题,难以满足现代工业生产的需求。智能变电站以高集成度、高智能化、信息传输的高可靠性等特点,能实现系统各单元数据交互,提高数据共享性,在现代电力系统中应用的越来越多。本文以智能电站为研究对象,依据智能电站基本特征设计了百灵220KV智能电站。本文首先从基本概念、特征以及结构三个方面详细阐述了智能
对电子听诊器采集的肺音进行异常检测,即判断其中是否含有啰音,能够大幅提升呼吸系统疾病早期筛查的效率。但是,目前肺音异常检测还存在以下挑战:(1)标注样本少,正负样本不均衡。经过专业医生人工打标的样本少,且正常肺音数据量远大于异常肺音数据量,无法为检测模型参数的学习提供充足的监督信息;(2)肺音中往往包含大量的噪声,包括:心音、说话声等,使得检测模型容易出现过拟合问题。针对以上挑战,本文的主要工作包
工业产品质量在线实时视觉检测是智能制造的一项重要工序。目前主流的检测基于人工提取特征,然而这种方法维护成本高和系统迭代慢。另外,面对复杂检测场景,往往难以有良好效果。深度学习作为一种新型人工智能技术,在视觉任务上获得优异性能。但是,深度学习模型性能严重依赖大量带标签的样本数据。在视觉检测任务中,缺陷样本是少量,而且缺陷区域的标记是困难的,耗时的。解决此问题方法主要有:标记框和像素级标记。相比前者,
近年来,卷积神经网络成为人体姿态估计的主流方法,但是网络结构复杂,在提升精度的同时也带来了大量参数与运算量,难以支持在算力与存储能力受限的终端设备上的实时应用。因此,本文从模型设计的角度出发,以优化模型运算量与精度的平衡为导向,研究轻量且高效的人体姿态估计算法,并以此为基础实现针对健身场景的动作相似度分析系统。本文的主要工作包括:1.结合轻量级卷积神经网络的特点,对Simple Baseline网
进入21世纪后,中国的国力不断发展,人口素质不断提高,人们对工业产品的质量也提出了更高的要求,与此同时,中国的人口红利期已过,人力成本逐年递增,尤其受新冠疫情的影响,导致招工难的问题日益凸显,这对‘中国制造2025’提出了更高的要求,机器换人的政策势在必行。工业机器人作为智能制造的最终执行者,它的研发与推广是机器换人政策实行的重要一环。本文将在已有的并联机器人架构的基础上,针对以CR2032电池生