论文部分内容阅读
由于工业用的金刚石或碳化硅的尺寸较小,在实际使用时往往需要借助于一定的结合剂基体来制成不同用途的复合材料。但是金刚石或碳化硅与结合剂(尤其是金属结合剂)之间具有较高的界面能,导致它们之间的界面结合强度很弱,从而影响复合材料的性能。为了改善复合材料的性能,本论文主要通过放电等离子体镀覆在金刚石或碳化硅的表面制备镀层来提高金刚石或碳化硅与结合剂之间的界面结合。具体研究内容和结果如下:(1)在SPS系统内,分别对粒度不同的金刚石和钛、硅、钼以及钨粉等金属粉末的混合粉体进行放电处理。通过控制混合粉体中金属粉末的含量,可以使得其经放电处理后不会被烧结成块体而能经筛分后获得相应金属元素镀覆的金刚石,即通过放电等离子体镀覆在金刚石表面制备了钛、硅、钼以及钨等镀层。研究表明,在放电处理过程中钛、硅、钼以及钨等金属粉末均与金刚石发生了化学反应,生成了由相应碳化物和金属单质组成的金属镀层。经放电等离子体镀覆在金刚石表面生成的Ti、Mo以及W镀层使得金刚石与铁基结合剂基体之间的界面结合强度分别增加了225 MPa、347 MPa和499 MPa;与此同时,经放电等离子体镀覆制备的硅镀层使得陶瓷结合剂金刚石复合材料的抗折强度和耐磨性分别提高了19.1%以及23.5%。(2)在SPS系统内,分别对粒度不同的碳化硅颗粒与钛粉、钼粉以及钨粉等镀覆金属的混合粉体进行放电处理,通过控制混合粉体中镀覆金属的含量,使得其经放电处理后能够经筛分而得到相应金属镀覆的碳化硅,即通过放电等离子体镀覆在碳化硅表面制备了相应的金属镀层。研究表明,在放电处理过程中钛、钼以及钨等金属粉末均与碳化硅发生了化学反应,并生成了由相应碳化物、硅化钨以及金属单质组成的具有一定厚度的金属镀层。由于钛镀层、钼镀层以及钨镀层的作用,使得复合材料中碳化硅颗粒与铁基结合剂基体之间的界面结合强度分别提高了200 MPa、308 MPa和401 MPa。(3)在SPS系统内,通过对金刚石聚晶与钨粉或钼粉组成的混合粉体进行放电处理,放电处理后可以经筛分进行分离而得到金属钨或钼镀覆的聚晶金刚石,即通过放电等离子体镀覆在金刚石聚晶表面制备了与其化学结合的钨镀层或钼镀层。在空气气氛下,表面有钨镀层或钼镀层的聚晶金刚石可以通过钎焊合金与硬质合金基体制备成金刚石聚晶复合材料,它们与基体之间的界面结合强度分别为87.8 MPa和36.8 MPa。此外,我们还基于水煤气反应的机理,采用高温水蒸气对金刚石进行刻蚀使其表面出现蚀坑,通过增大其与结合剂之间的接触面积来改善二者之间的界面结合。经高温水蒸气刻蚀后的金刚石在其{111}面和{100}面分别出现了三棱台状和四棱台状的蚀坑。与含原始金刚石的陶瓷结合剂复合材料相比,含刻蚀后的金刚石的复合材料中其抗折强度和耐磨性分别提高了12.9%和15.4%。