新型材料Mo2Ga2C与MgCaSi以及(MgCoNiCuZn)O热性能和力学性能理论研究

来源 :广西大学 | 被引量 : 0次 | 上传用户:lz274458795
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
新型材料是指新出现或正在发展中的具有传统材料所不具备的优异性能和特殊功能的材料,是世界各国材料科学研究以及战略竞争的热点和重点,有着十分广阔的应用前景和极为重要的战略意义。随着社会经济的不断发展,各个行业对新型材料的需求越来越大,对其功能的要求也越来越高。由于材料功能的体现与其性能密切相关,因此,研究材料的性能对于新型材料的加速开发及其应用开拓有着重要的意义。对材料来说,最重要的性能便是热力学性能和弹性力学性能,对于二者的研究能够为材料结构的优化设计以及应用提供重要的理论依据及指导。本文运用准谐近似Debye-Grüneisen模型及第一性原理计算,结合特殊准随机结构(SQS)模拟研究了三种不同晶型的新型材料:六角晶型的MAX相陶瓷材料Mo2Ga2C、正交晶型的镁合金MgCaSi材料以及立方晶型的高熵氧化物(MgCoNiCuZn)O陶瓷材料的热力学及弹性力学性能,主要研究内容及结果如下:(1)Mo2Ga C和Mo2Ga2C的稳定性及热力学性能研究表明,两者均是热力学稳定的,且Mo2Ga2C由于形成焓更低更稳定;两者的系统熵主要来源于振动熵贡献,且随温度的升高而增大,而Mo2Ga2C在高温下更稳定;Mo2Ga2C的体模量相对较小,表明其强度较小;两者的热膨胀系数、等容热容、等压热容均在低温时快速增加而在高温下增幅变缓,且Mo2Ga2C的值较大,这是由于其Ga-Ga共价键更强所致;两者的德拜温度均随温度缓慢下降,且Mo2Ga2C下降趋势更快,德拜温度较小,表明强度和导热性能变小;两者的格林乃森参数温度依赖性较小。两者的弹性力学性能对比研究表明,在基态下,两者都有很好的力学稳定性;由于Mo2Ga2C中Mo-C键强度减弱,使得其力学强度有所降低;两者均具有延展性,但Mo2Ga2C延展性较弱,弹性各向异性较小;在高压下,Mo2Ga2C的剪切及杨氏模量在超过22 GPa后随压力增大而减小,意味着有相转化发生;随压力增大延展性增强,而维氏硬度下降了;电子结构性能研究表明Mo2Ga2C呈金属性,晶胞中形成了较强的Mo-Ga键及Ga-Ga键。(2)对MgCaSi和Ca2Si的稳定性及热力学性质的对比研究得出,两者都是热力学稳定的,且MgCaSi形成焓更低更稳定;两者的系统熵主要来源于振动熵贡献,均随温度的升高而增大,而MgCaSi熵值较小,表明在高温下不够稳定;MgCaSi体模量较大,而抗软化能力较小;两者的热膨胀系数及等容、等压热容在低温时快速增加而后在高温下增幅变缓;MgCaSi德拜温度随温度增加降幅更快且值更大,表明强度和导热性能较好;两者的格林乃森参数对温度依赖性较小。在对两者弹性性能的比较研究中发现,基态下MgCaSi的弹性常数及弹性模量都较大,表明其力学强度较大;二者都表现出脆性特性,且MgCaSi脆性更强;二者均呈各向异性,MgCaSi的各向异性较小;高压下两者的力学性能均得到改善,MgCaSi对压力敏感性较小;电子结构性能研究表明MgCaSi呈金属性,晶胞中形成了较强的Mg-Si、Mg-Ca和Si-Si共价键。(3)对(MgCoNiCuZn)O及锂掺杂(MgCoNiCuZn)O0.90Li0.10O,(MgCoNiCuZn)O0.80Li0.20O材料的热力学性能比较研究得出:由于电荷补偿机制的发生,三者的晶格参数随着锂含量的增加而降低;三者均是热力学稳定的,且随着锂浓度增大更易生成;三者的系统熵主要来源于振动熵贡献,均随温度的升高而明显增大,高温下(MgCoNiCuZn)O较Li+掺杂氧化物更稳定;三者的体模量随温度升高,软化情况相似,且随着锂含量的增加,抗软化能力及力学强度都变小;三者的热膨胀系数、等容、等压热容随温度升高在低温均随温度呈线性上升,在高温趋于平缓,且随着锂含量的增加,热膨胀系数变大,等容、等压热容均变小;温度对三者的德拜温度和格林乃森参数影响较小,随着锂浓度增大德拜温度和格林森参数以及变化趋势都变大。基态下(MgCoNiCuZn)O的弹性力学研究表明,该氧化物具有较好的力学稳定性;与二元氧化物相比,其弹性常数及弹性常数及模量近似服从混合规则;泊松比及柯西压研究表明,该氧化物具有延展性;电子结构性能研究表明该氧化物中金属原子和非金属原子O存在较强的离子特征的共价键。
其他文献
荧光技术已成为一种检测分析物,观测细胞形态、结构和了解生理过程的非侵入性方法。有机小分子荧光探针由于其合成可控性、设计方案灵活性和使用简便性等优点成为荧光技术在
果蔬采摘一直是农业机械研究领域的热点问题,近年来针对各种水果的采摘装置种类繁多,各种创新机构层出不穷。人工采摘方式在采摘过程中可能存在果实损伤的问题,且人工采摘效率很低,对于较高处的荔枝果实的采摘还会存在一定危险性。荔枝的采摘作业难度较大,但经济价值很大,国内荔枝采摘方面投入的研究较少,存在采摘效率低,果实损伤率大,工作条件要求较高等问题。因此,本文在综合国内外现有荔枝采摘机构特点基础上,创新性的
核因子-κB(nuclear factor-kappa B,NF-κB)蛋白包括NF-κB1、NF-κB2、Rel A、Rel B和c-Rel,以二聚体的形式构成转录调控因子,能够结合靶基因的NF-κB结合位点,调控靶基因的表达,参与机体的免疫应答、细胞凋亡、癌症等多种生物学过程。卵形鲳鲹(Trachinotus ovatus)已成为我国南方重要的经济养殖鱼类,每年由于病害给卵形鲳鲹养殖业造成巨大
学位
禽痘是由禽痘病毒属(Avipoxvirus,APV)成员引起家禽、野生鸟类和各种禽类的一种急性接触性传染病,流行范围遍及全球。禽痘的临床症状主要表现在无毛或少毛皮肤部位出现痘疹的皮肤型病变或在禽口腔、咽喉或气管黏膜出现纤维素性痂膜的黏膜型病变。APV主要通过昆虫机械性传播,也可通过气溶胶、破溃皮肤和黏膜传播。禽痘给家禽养殖业带来巨大的影响,同时极大威胁野生鸟类尤其是濒危珍禽。禽痘在鸭和鹅等水禽较为
全球人口持续和快速增长刺激了更多的食物需求。氮直接影响作物产量和品质,因此合理施用氮肥在保障粮食安全中发挥着重要作用。但是,在水稻生产中过量使用氮素化肥引起了大量
地质聚合物(简称地聚物,又称无机聚合物),是一种由硅氧四面体和铝氧四面体组成的具有三维网络状的类沸石结构的非晶态胶凝材料,具有高强、耐酸碱、易成型、耐高温、成本低等优
目的:(1)制备具有导电功能的多微通道多壁碳纳米管琼脂糖导电支架,并对其进行表征,验证其生物相容性,利用支架进行细胞三维立体培养,研究电刺激对RSC96细胞生长的影响。(2)制
甲烷氧化微生物是全球碳循环中不可或缺的组成部分,它们是全球甲烷排放的最大控制环节,具有重要的生态意义。近几十年来新发现的硫酸盐型厌氧甲烷氧化过程(sulfate-dependent
中国川藏铁路正在大力建设中,其中桥梁占比尤为突出。钢管混凝土拱桥在刚度、耐久性、经济方面的优势令其在西藏高原地区公路和铁路中具有广泛的应用前景。温度计算理论是钢