微/纳尺度铜基和镍基复合材料的电沉积工艺及其拉伸性能研究

来源 :东北大学 | 被引量 : 0次 | 上传用户:cannyjie
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
微/纳尺度金属基复合材料在电子封装、汽车及航空航天等领域具有潜在的应用价值和理论研究意义。本论文工作采用电沉积技术,通过改变电流波形、搅拌方式、电流密度、沉积时间等工艺参数,成功地制备了还原氧化石墨烯/铜(RGO/Cu)复合材料和具有不同层结构的镍层状复合材料。研究了工艺参数对于RGO在Cu基体内的分布、晶粒尺寸、晶体取向的影响规律以及对所制备材料拉伸性能的影响;此外,通过改变电沉积工艺,制备了不同层厚比和晶粒尺寸比的多层Ni复合层状材料,通过不同微结构样品拉伸性能测试,研究了界面耦合效应引起的额外应力和额外加工硬化率,探究了多层Ni在拉伸模式下的变形断裂机理。获得如下主要研究结果:以氧化石墨烯(GO)为添加剂成功制备了厚度为100 μm的RGO/Cu复合材料。优化的制备条件为:GO浓度为0.2 g/L、超声辅助条件下的反向脉冲电沉积、正向电流密度为5A/dm2,所制备的复合材料组织致密、缺陷少,GO在电沉积过程中被部分还原成RGO,且在Cu基体内均匀分布,复合材料晶粒尺寸为0.47±0.26μm;RGO起到异质形核、细晶强化和Orowan强化作用;样品的拉伸力学性能为屈服强度达341±39MPa,极限抗拉强度为398±68MPa,均匀伸长率为8.3±2.3%,断裂伸长率为20.0±2.0%。与具有择优取向的电沉积Cu相比,RGO使得Cu基复合材料晶体取向更为随机。通过周期性改变电沉积电流密度和沉积时间,成功地制备了不同层结构交替的Ni多层复合材料。当相邻组元层电流密度分别为100和30mA/cm2时,所制备的相邻组元层晶粒尺寸分别为27±9 nm和77±11 nm,改变沉积时间制备的层厚比为3:1的多层Ni复合材料的综合力学性能最好,其屈服强度为1512±101 MPa、极限抗拉强度为1843±56 MPa,均匀延伸率为3.14±0.2%、断裂延伸率为9.5±1.8%。与单组元Ni相比,组元层结构不同的多层Ni复合材料的其强度和塑性有良好的匹配。多层Ni结构中由力学不相容层之间的协同相互作用引起的界面耦合效应会对材料拉伸性能有显著的改变,可以有效提高延伸率和加工硬化能力。多层Ni的额外加工硬化率是由额外应力提供的,其变化趋势均是随应变增大而逐渐减小。额外加工硬化率和额外应力随着晶粒尺寸比和层厚比的降低而升高。界面耦合作用不一定是利于材料的,过多的界面会引入更多缺陷或相邻层晶粒尺寸差异较大造成相邻层力学不相容程度较大导致材料的强度下降。多层Ni断裂模式为剪切加韧窝的复合型断裂。
其他文献
金属腐蚀与防护是当今人类面对的一个重大课题。为了有效避免金属腐蚀带来的损失,人们采取了多种方法,防腐涂层是其中应用最为广泛的一种。防腐涂层的性能在一定程度上由所添加的防锈颜料决定,当前传统的具有良好缓蚀效果的六价氧化性铬酸盐和五价非氧化性磷酸盐等缓蚀颜料由于会对环境造成污染而逐渐受到使用限制。为此有必要研发出新型的绿色防锈颜料。已有的研究报道表明,钒酸盐在水环境中溶解释放的VO43-可以吸附至铝合
本文以国内某钢铁企业2160 mm热连轧生产线为背景,基于生产过程的数据和热轧带钢板凸度控制的相关理论,提出并建立基于人工智能技术的高精度板凸度预测及故障分类模型。本文的主要研究工作如下:(1)结合实际热连轧生产线的工艺背景及数据传递原理,分析轧机的控制方式,筛选影响板凸度的关键特征。针对热轧带钢工业现场数据,提出收集、异常值剔除及数据降噪的预处理方案,并对输入特征进行归一化处理,为后续的板凸度建
随着现代科技和电子信息产业的不断发展,铜及铜合金的应用变得更加广泛,但对铜合金的性能要求也越来越苛刻。Cu-Cr合金作为典型的时效强化型铜合金,具有优良的性能,已在工业中广泛应用。通过添加合金元素来进一步提高Cu-Cr合金的性能一直是研究热点,但主要集中在Cu-Cr-Zr系合金的研究。Sn和Zn元素对铜合金的电导率影响不大且能提高其强度,为此本文设计了 Cu-0.67Cr-0.23Sn、Cu-1.
本文对不同含量Ca的Al-Ca二元合金进行系统研究,探究了合金第二相的转变机制,并分析了第二相转变对合金导电率、硬度、拉伸性能的影响。采用失重、电化学性能测试研究了合金耐蚀性能。此外,通过向亚共晶Al-5wt.%Ca合金添加B元素,研究硼化、保温时间、冷却速度对合金组织和性能的影响,进而开发出适用于高压输电的Al-Al4Ca复合材料。本文的主要研究结论如下:(1)Al-5wt.%Ca合金的第二相主
现代轨道交通运输的快速发展导致车载重量、运载密度和运行速度大幅度提高,使得车辆与轨道、桥梁等结构的服役环境愈加恶劣,因此开展列车-桥梁耦合系统动力学与可靠性分析显得异常重要。列车-桥梁耦合振动系统的参数具有随机不确定性,轨道不平顺等随机激励也进一步加剧了系统振动响应的随机性。因此,本文综合考虑列车-桥梁耦合振动系统模型参数和载荷激励的随机性,开展了系统耦合不确定性动力学建模与分析研究,获取不同服役
硼化钛(TiB2)陶瓷由于具有优良的导电性和不与铝(Al)液及冰晶石反应的特点,可用作铝电解槽的阴极材料。但由于没有高性能、工艺简单、低成本的TiB2陶瓷制备技术,TiB2陶瓷材料并没有在工业铝电解槽阴极上获得应用。本文针对这一问题,基于真空熔融渗Si法,研究开发了一种工艺简单、成本低和性能稳定的TiB2复合材料制备新工艺。论文基于真空熔融渗Si法制备出导电性能较好的TiB2复合材料,并通过在复合
随着石油天然气等开发工业的深入发展,油气井的开采深度越来越深,所面临的地质条件越来越复杂,对在油井中起关键作用的石油套管的要求也越来越特殊和苛刻,当前API钢级石油套管的强度与韧性等性能指标已难以满足需求。因此,对生产非API钢级既具有高强度还具有高韧性石油套管工艺的开发变得尤为重要。热轧无缝钢管在线控制冷却技术有利于实现初次组织的调控,进而提升套管强韧性。本文结合与宝钢合作开展的热轧无缝钢管控制
目前,高温结构材料和相关的制备技术越来越重要,新型高温结构材料及其焊接技术已经成为发展新型航空发动机等领域的关键。金属间化合物高温合金是未来高温结构材料的发展趋势之一。本文拟针对一种新型Ni3Al单晶高温合金的专用焊接材料及其工艺开展研究,实现该合金的优质连接,选题具有重要创新性和工程应用价值。基于此背景,本文的主要工作内容与成果如下:(1)本文首先基于母材合金的成分特点,以Si和B为降熔点元素设
铁基非晶合金具有特殊的原子结构特点,从而使其某些软磁性能明显优于传统晶态合金,一直被视为新材料开发的重点。铁基非晶合金作为高性能软磁材料被广泛应用于电力电子行业,极大地提升了磁性制品的产品性能,使磁性产品朝着更加小型化和节能化的趋势发展。但铁基非晶合金的饱和磁感应强度(Bs)和非晶形成能力限制了其在工业生产上的使用范围,在高精尖领域对于高性能材料的需求十分迫切,因此提高铁基非晶合金的饱和磁感应强度
重型H型钢相较普通热轧H型钢具有更大的尺寸和厚度,常规的控冷工艺难以保证产品性能,以超快速冷却技术为基础的QST(在线淬火-自回火)工艺为重型H型钢轧后冷却提供了解决方案。本课题为开发不同翼缘厚度重型H型钢产品QST冷却工艺,采用有限元模拟和实验相结合的手段展开研究。研究工作包括:(1)利用有限元分析软件,对40mm厚、60mm厚、115mm厚三种翼缘厚度重型H型钢进行不同QST工艺下温度场模拟分