论文部分内容阅读
随着智能电网数据采集系统不断建设和发展,越来越多的智能仪表被装入电力网络,用以获取电网和用户的实时数据。这些实时数据具有数据量大、采集频率高等特点,而且数据间关联性较强。在售电侧改革情景下,这些海量数据的潜在价值逐渐被挖掘与应用。本文以智能电网中用户用电行为的特征提取与用户聚类方法、“网-荷”互动模式为两大研究点。首先介绍了智能电网用户用电行为分析理论框架以及应用场景,重点分析了提取动态马尔科夫模型作为用户用电特征、基于改进的自适应k-medoids算法实现用户分层聚类的用户用电行为分析方法。并运用