埃米尔·波斯特及其对可计算性理论的贡献

来源 :河北科技大学 | 被引量 : 1次 | 上传用户:littleboy88521
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
其他文献
微分方程是描述与刻画物理过程、系统状态、社会与生物现象的有力工具。我们通常所研究和应用的微分方程多是常微分方程(ODEs)。而在许多现实模型中,我们需要知道系统过去时
乘子理论对研究函数空间算子理论和函数空间性质有着重要的作用。本文主要讨论了C中有界对称域上n A空间和pA空间的函数性质以及乘子。在单复变的解析函数空间p,qa,A、pA等已
摄动微分系统是动力系统研究中的重要内容,有很强的实际背景,因此产生了很多应用,引起了众多学者的关注.目前摄动微分系统模型大多数只涉及低阶和低维,而事实上高阶和高维的
非线性偏微分方程的求解方法已经有很多种,例如反散射法,延拓法,Bcklund变换法,Darboux变换法及Lie变换群法等。由于非线性偏微分方程的复杂性,针对每个方程求其精确解都有一定的
生物种群是生物学研究的重要单元,生物种群的数学建模与分析在研究种群与环境的关系、种群的演变规律方面具有重要的作用。为了保护生物的多样性、合理地利用可再生的生物资源
1990年,Pardoux和Peng(彭实戈院士)[68]解决了一般形式的非线性倒向随机微分方程(BSDEs)解的存在唯一性.这一重大成果奠定了倒向随机微分方程的理论基础.1991年,Peng[74]给出