USY型分子筛的改性及稠环芳烃催化裂化反应研究

来源 :中国石油大学(华东) | 被引量 : 0次 | 上传用户:liongliong595
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着世界范围内原油资源的重质化和劣质化加剧,在石油炼制中承担着重要角色的催化裂化工艺所面临的挑战越来越大,日趋严格的环保法规和人们对清洁油品的需求都促使着催化裂化工艺被不断地改进和优化。重油中的芳烃含量很高,尤其是挥发性和生物毒性都很大的稠环芳烃对环境有着很大危害。通过催化裂化工艺处理重油,不仅可以消耗掉部分稠环芳烃,减少污染;还可以副产一定的芳烃资源,增加炼厂效益。Y型分子筛作为催化裂化中的核心催化活性组分,其催化性能将直接影响催化裂化过程的最终成效。因此,在当前加工、利用重质油的大背景下,对商业USY型分子筛进行改性,提高其催化裂化稠环芳烃的能力显得十分重要。本论文以商业USY型分子筛为母体分子筛,分别使用EDTA-2Na、草酸、柠檬酸、酒石酸和高温水热处理对分子筛的酸性质和孔结构进行优化调整,论文首先考察了不同物质的量浓度的不同有机酸改性处理和不同温度的高温水热处理对分子筛的结晶度、孔结构和酸性质等的影响,以萘的催化裂化反应为目标,筛选出有代表性处理效果的最佳酸处理浓度和水热处理温度,随后考察了高温水热处理后不同有机酸处理的复合改性对USY分子筛相应性质的改性影响。USY型分子筛经不同的有机酸处理,均能不同程度的调节分子筛的孔结构、结晶度和酸性质。高温水热处理由于脱铝补硅的作用扩张了孔道尺寸,降低了酸性位密度并提高了强酸位,但水热处理的分子筛孔道中会产生许多的非骨架物种并堵塞孔道,高温水热和有机酸复合处理可以更好的调节分子筛的酸性分布和孔结构。以萘为模型化合物设计稠环芳烃催化裂化的模型反应,在催化裂化微型反应器上进行反应评价,考察了不同优化处理的USY型分子筛催化剂对稠环芳烃催化裂化反应的影响。研究发现,与未改性的商业USY型分子筛相比,经过水热后酸复合处理的催化剂由于优良的酸性分布、丰富的介孔分布和更少的微孔,在催化裂化萘的正十二烷模型物时取得更好的稠环芳烃催化裂化效果,且焦炭产率较未改性的商业USY型分子筛更低。探明了萘的催化裂化对USY型分子筛的孔结构和酸性质要求并对萘的催化裂化机理进行推测,得到的经验有助于稠环芳烃催化裂化催化剂的开发和改进。
其他文献
我国稠油储量丰富,开采潜力巨大。稠油黏度大、流动性差,水驱时由于水油流度比差异大,指进现象严重,波及系数小。克服稠油开发的技术难题,高效的开发稠油资源具有长远的战略意义。降黏复合驱是一种很有潜力的提高采收率方法。其原理是在表面活性剂作用下使稠油形成O/W型乳状液,通过降低稠油黏度来降低油相渗流阻力,提高流动性和动用程度。本文针对普通稠油油藏条件,以乳化降黏复合体系及两种常规超低界面张力型复合体系为
强非均质油藏平面纵向上物性非均质严重、动用程度不均衡,注采调整难度大。如何准确评价强非均质油藏动用程度差异,进而形成快速可靠的注采调整技术方法,成为目前该类油藏注水开发后期调整的关键问题。本文针对油田现场注采剖面监测资料缺失以及注采不平衡的问题,首先以CRM模型为基础,推导并建立多层油藏适用的ML-CRM模型,进行井间连通性计算分析,进而实现注入水多层多向动态劈分;然后结合注采单元劈分方法,对各注
吸力贯入式板锚是将大型海上浮式生产装置系泊于海床的系泊系统,具有定位准、效率高、经济等优点,已越来越多地用于更深的海域。吸力贯入式板锚在大变形转动调节过程中,会产生一定的埋深损失。本文采用数值模拟的方法,对板锚转动上拔过程中锚链、板锚的承载变形机理进行了研究,主要研究如下:首先,对锚链在土体中大变形切割运动进行模拟。提出了一种新的锚链-土相互作用模型,考虑锚链切割土体时土的回流与不回流特性,给出不
焊接残余应力是影响焊接结构疲劳寿命的关键因素。精确地预测焊接残余应力,深入了解残余应力对焊接构件疲劳寿命的影响机制,建立充分考虑焊接残余应力作用的疲劳寿命预测方法,对基于残余应力调控的疲劳设计具有重要意义。本论文以SAF2205不锈钢为研究对象,通过优化疲劳损伤本构模型,建立了虑及不同循环周次下残余应力演变规律的寿命计算方法,为接头寿命预测提供参考依据。主要工作和结论如下:(1)针对SAF2205
发酵行业、造纸行业、矿石开采、金属表面处理和加工等行业和过程中,往往产生大量的酸性含盐废水,威胁生态环境和人类健康。膜分离法具有效率高,灵活等优点,可以实现酸与金属盐的分离回收,可被用于酸性废水处理。以聚酰胺化学结构为分离层的传统反渗透和纳滤膜因其化学结构本质上的缺点而导致酸碱稳定性不好、抗氧化性能较差,限制了其在含酸废水处理领域中的应用。聚磺酰胺是一种以磺酰胺键联结的高分子,其特定的磺酰胺键使得
S油田目前处于“高含水率、高采出程度”阶段,剩余油分布规律复杂,总体呈现“整体分散、局部富集”的特征,持续提高油田开发效果的难度较大。因此有必要对目前的渗流场进行描述和评价,并制定相应的重构方案。为了达到明确目标油田各个开发阶段波及和驱油特征的目的,从一维、二维、三维三个维度展开物理模拟室内实验。分别考虑平面波及系数和纵向波及系数的渗流特征和静态特征,推导相应的理论计算公式,并对主要影响因素进行敏
二氧化碳作为温室气体之一,是导致全球温室效应及气候变化的主要因素之一。CO2的分离是对于温室气体减排和能源气净化的一个重要工业过程,CO2分离技术及有效捕获成为了近年来的研究热点。与传统的分离技术相比,膜分离技术具有能耗低、易放大、操作简便、投资和运营成本低及环境友好等突出优势,因此被看作是一种绿色且经济可行的替代方法,极具应用前景。但是气体分离膜材料普遍受到渗透性和选择性间“trade-off”
在过渡金属催化剂中,钯催化剂因独特的配位性质和卓越的催化性能,对交叉偶联、脱氢等反应展现出无可比拟的催化性能,开发高效可循环的多相钯催化剂一直是科学研究的重要方向。纳米碳材料价廉易得,具有优异的结构和性能,是制备多相钯催化剂的优质载体材料。然而,传统碳材料负载的钯催化剂催化活性和选择性仍有待进一步提升,设计和开发新型高效的纳米钯/碳多相催化剂具有重要的研究意义和应用前景。鉴于载体的形貌结构和电子性
随着石油天然气资源需求量的与日俱增,国内油气供需关系产生了巨大缺口,寻找并开发油气资源已日趋紧迫。石油勘探开发已迈向深层油藏、超深层油藏、复杂地层油藏以及海洋油藏,使得石油勘探和钻井开采的难度不断增大。等井径钻井技术可以实现无径损钻井,是实现深井和超深井的技术保障,也是钻井技术发展的必然选择。等井径钻井技术的核心是等井径膨胀管技术,而管材的本构及其膨胀成形理论是发展等井径膨胀管技术的理论基础。本文
锂离子二次电池具有充放循环次数多、环境友好、使用安全等优点,已被广泛应用于各个行业。然而,传统商业化的锂离子二次电池主要以石墨为负极,其相对理论比容量(372 m Ah g-1)较低,迫切需要研发高比容量负极材料,以进一步提升锂离子二次电池的能量密度。碳材料是一类重要的锂电负极材料,其结构和性能与其原料紧密相关。重质油作为石油加工过程中的副产品,产量巨大,主要由长链碳氢化合物和多环芳烃组成,其含碳