论文部分内容阅读
无论在地球表面还是高空,高温现象都普遍存在,地表发生的一些高温现象如森林大火、草场火、火山活动、油井火、煤火等,在高空中如飞机尾焰、发射的火箭体、进入大气层发生燃烧的物体等。这些高温现象的主要特征就是向外辐射电磁辐射,引起热异常,一旦它们成为被研究者关注的对象,就可以称之为高温目标。传统高温目标的监测手段往往是现场测量,这种监测方法的限制因素很多,比如无法实现大范围的监测,甚至无法到达高温目标现场,如火山喷发、森林火等,有时候我们甚至无法预知高温目标事件发生的时间等等,而应用遥感技术可以实现宏观、快速、大范围监测这些高温目标,弥补了现场测量的缺点。高温目标遥感特征识别技术在环境遥感领域迅速得到了发展,在军事领域也引起了人们的高度重视。高温目标遥感识别技术一直是遥感科学研究的重点,也是遥感技术应用的重要支撑。利用遥感技术识别高温目标,是地气系统、自然灾害监测、自然资源调查等对地观测技术应用领域的先行基础工作,有着巨大的社会和经济效益。如何从遥感数据中提取高温目标的特征参数,如温度、尾焰、NDVI等信息,并据此来识别高温目标已成为当前的研究热点和难点,同时,也对遥感影像数据处理和应用提出了更高的要求。现有的高温目标识别的算法基本是基于NOAA/AVHRR和EOS/MODIS数据基础上,通过热红外(8~14μm)和近红外(3~4μm)辐亮度值反演亮温,通过亮温异常并结合其他相关信息来判别高温目标,如判断是否为森林、草场火点等。通过热异常识别高温目标是最有潜力的途径之一。高温目标识别的基础理论和数据处理方法包括高温目标的遥感生成机理和特征反演两大部分。本文在深入研究高温目标遥感成像机理的基础上,从自然灾害监测工程应用的需要出发,着重解决遥感提取高温目标特征的几个关键问题,包括:高温目标遥感特征生成机理,如温度异常特征、空气特征变化、高温过程分析、传感器响应等;提出利用近红外(1.3~3.0μm)识别高温目标的理论、方法;作为生态环境监测方面的应用拓展,提出利用卫星遥感技术监测土法炼焦污染源的技术和方法。论文首先研究高温目标影像特征识别的遥感机理问题。高温目标和周围环境差异的主要特征是高温目标在燃烧过程中产生了大量的辐射能量,同时还包括烟尘、气体等,这些特征在遥感影像上的响应即遥感影像特征,其识别就是通过这些特征来提取高温目标信息。由于混合像元、组分温度、像元比辐射率和大气等影响,高温目标的遥感特征识别就要困难的多。之后,本文针对以往高温目标遥感特征识别中存在的问题,开展遥感技术监测土法炼焦应用研究,主要创新如下:(1)改进了高温目标遥感特征识别研究的方法。采用从高温目标遥感特征形成机理分析入手的策略和方案,从太阳光源、高温目标的空间特征、光谱特征、辐射传输模型、大气影响和传感器响应等整个成像链路和相互间的偶合关系入手来研究高温目标遥感影像特征,对于进一步的研究和应用具有重要的意义。(2)提出利用近红外(0.7~3.0μm)进行高温目标识别的方法。以往进行高温目标识别都是利用热红外卫星数据,本文在详细分析TM传感器对高温目标响应的基础上,提出利用近红外波段(0.7-3.0μm)进行高温目标识别的理论基础,证明其具有探测高温目标的潜力,以草场火、煤火和火山为例,利用近红外技术,对高温目标遥感探测进行了验证研究。(3)首次提出用卫星遥感技术探测土法炼焦的方法体系。把土法炼焦与热辐射和遥感特征联系起来,利用TM白天数据对山西某地区土法炼焦的遥感探测实验证明,TM7和TM5对土法炼焦产生的高温敏感,TM6对高温异常敏感,但是由于空间分辨率的影响,其对面积小的高温异常不如TM7和TM5敏感。通过TM数据对该区土法炼焦卫星遥感动态监测(1999年和2004年),监测数据得到了有关部门的认可,TM数据是获得可靠、定量土法炼焦信息的重要工具,拓展了遥感应用范围,为遥感技术用于环境监测方面开拓了一个新的应用领域,成果可以用于其它高温目标的卫星遥感监测上,如火山、森林火、草场火、煤火、土法炼钢、土砖厂等。(4)改进了Landsat TM数据反演土法炼焦温度方法。整像元温度大于68℃,将使TM6波段达到饱和,通过该方法,利用TM6热红外数据通过对土法炼焦温度反演结果与地面测量结果对比,证明该方法是可行的。国土资源西南地区科技查新检索站对《遥感技术监测土法炼焦》委托项目进行了成果查新,在对4个查新点查新的基础上,得出的查新结论为“在所查国内外公开发表的文献范围内,除见有本课题组人员的研究成果外,未见有直接与本课题查新点相同或类似的文献内容报道,本课题的研究成果具有新颖性”(见附件Ⅵ)。