重型燃气涡轮高温动叶冷却结构换热机理的数值研究

来源 :哈尔滨工业大学 | 被引量 : 0次 | 上传用户:ehuer
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
重型燃气轮机汇集了人类社会工程技术领域最先进科技成果,其研制水平展现了一个国家的工业生产能力,它在能源的高效、洁净和安全利用中起至关重要的作用。而重燃的高温动叶不仅要承受超过本身制造材料许用温度的高温,而且在运行中始终处于高速转动状态,在较大的离心力、科氏力及其衍生的浮生力的作用下,工作环境在重燃叶片中最为恶劣。因此,高温动叶及其冷却结构的研究乃是重燃通流部件研制中的制高点技术。本文首先为高温动叶的研究作了下述准备工作。在哈工大经过工程考核的S2流面计算软件的基础上,开发了针对重燃多级气冷涡轮的一维设计软件、准三维设计软件和一维热流管网计算软件。针对重燃涡轮内外流动气热耦合一体化设计和数值模拟,采用具有试验数据的Mark II型叶片和带有多排气膜孔的C3X叶片作为计算模型,验证了本文采用的数值方法。应用一维和准三维设计软件消化和吸收了9FA的先进设计经验,自主设计了F级中低热值燃料重燃涡轮的通流部分,并与9FA的通流特性作了对比。结果表明,两者三级涡轮各级承担的焓降均为逐级降低的,第二级降低的梯度较小,这样分配涡轮通流部分的焓降,既能提高上游级的承载能力,又能减少通流部分的余速损失。由于中低热值涡轮在通流设计中,采用了子午收敛和可控涡相结合的设计方法,叶栅轴向间隙中沿叶高的气动参数分布比较均匀,上游叶栅为下游叶栅提供了良好的进口流场,同时也降低了径向掺混损失。但是,由于中低热值涡轮初温较低,冷气流量较大,通流效率比9FA涡轮低1.0%。此外,使用一维热流管网计算软件,快速预测了MarkⅡ叶栅原型圆管内冷通道改型为突扩突缩“竹节”通道以及高温动叶高速旋转对内部冷却的影响,发现加强内部冷却壁面对冷气的扰动会强化冷气与叶片壁面的换热效应,这为高温动叶内部冷却结构的改型设计打下了理论基础。以9FA涡轮动叶为母型,在缺乏原始几何数据的条件下,经过反复理论推敲和气热耦合数值模拟,探索9FA涡轮的先进设计经验,基于我国燃料供应特点,设计出高温动叶和其内部冷却结构的初始方案。此后借助气热耦合数值模拟,获取初始方案的流动特性和换热特性,理论分析该方案的可行性以及存在的问题。接着进行了三次改型设计,获得高温动叶的原型方案。在改型设计中主要调整了冷却通道拐角形式、挡板冲击孔尺寸、尾缘出流通道宽度、补气孔位置及角度等。对原型方案的数值分析表明,叶片的流动和换热特性良好,基本达到了预期的设计目标。最后,对原型方案作了进一步改型设计:改进冷却腔内的扰流肋形式,采用60°V型肋;在冷却通道Ⅵ、Ⅶ之间沿叶高增设三处贯通缝结构。对其进行数值计算,结果显示:叶片外表面温度有所下降,局部换热强化效果较好;冷气入口参数更趋合理;冷气质量流量增大,展向分布更为均匀;气膜喷射及覆盖能力增强。显然,预期的冷气流场改善与冷却效果得到了部分实现,改型叶片,即最终得到的冷却结构对于工程应用具有重要的参考价值。为了尽量降低叶片金属表面的温度,延长叶片的使用寿命,数值研究了在叶片表面涂覆热障涂层对叶片换热性能的影响。与无涂层的高温动叶相比较,有涂层叶片表面与气膜之间的温差减小,因而降低了通过叶片的热流密度,这导致叶片金属表面的温度分布更加均匀。除特殊的叶顶区之外,有涂层的叶片金属表面比无涂层的叶片表面温度低80K。一般内部冷却结构中都设置补气孔,本文在相同冷气流量的条件下,通过比较有无补气孔内部冷却结构的流动和换热性能,来认识补气孔的作用。对有无补气孔的高温动叶内部冷却结构的气热耦合数值模拟结果显示,无补气孔时,冷却效果明显高于有补气孔的内冷结构,可是由于冷气在内冷结构中的流程长而曲折,流阻大幅增高,需求的冷气进口压力已远超压气机供气的最高压力,因此无补气孔的内冷结构没有工程应用价值。而具有补气孔的内冷结构与无补气孔的比较,冷却效率较低,叶表温度和温度梯度较高,然而在叶表温度及其梯度不超标的情况下,要求的冷气进口压力在压气机的供气压力范围内。内冷结构后腔有无补气孔不仅叶表温度分布相当,而且冷气进口压力也几乎没有差别,后腔补气孔可以取消。鉴于高温动叶冷却效应实验研究存在困难,本文应用气热耦合计算方法进一步研究了高速旋转对冷却系统的影响,计算结果表明,冷气的湍流度显著升高,流阻与换热能力加强,叶表温度在静止状态达到设计要求,在旋转状态下也一定符合设计要求。数值结果证明了对于燃气涡轮高温动叶冷却结构,以静态试验替代动态试验的可行性。在亚声速风洞上,完成了F级中低热值燃料重燃涡轮高温动叶叶型的气动特性吹风试验。试验结果证明,高温动叶的叶型损失随冲角的变化曲线比较平坦,说明F级中低热值燃料重燃涡轮高温动叶选择的叶型具有良好的变冲角特性。
其他文献
随着微机电系统和纳米技术的高速发展,微纳尺度的热量传递引起了广泛关注。微纳尺度条件下,经典的傅里叶导热定律不再成立。声子作为绝大多数半导体的热载子,其微观动力学行为对微纳尺度热量输运有着重要影响。对于有限尺寸微纳结构内的声子导热,声子玻尔兹曼方程是目前最广泛使用的理论模型之一。由于材料内不同频率的声子的平均自由程和弛豫时间通常会跨越好几个数量级,声子输运本质上是个多尺度问题。迄今为止,大多数求解声
作为最重要的化石燃料之一,未来几十年内煤炭仍然在我国的能源消耗中占主要地位。但是,煤炭利用会引起严重的环境问题。而生物质能属于可再生能源,可为世界提供约14%的能源消耗。但是,生物质原料的供应问题,限制了其大规模的工业应用。煤与生物质共利用可以弥补两者之间不足,是一种潜在的有前途的技术方法。煤与生物质共热解作为共热化学转化过程中的初始阶段,对后续过程起到至关重要的影响。在共热解过程中,煤与生物质之
在过去的几年中,随机变分推断在多种机器学习任务中显示出其强大能力,其应用涵盖自然语言处理和信息检索等各个领域。各领域应用不断收集待处理的数据,引发了大数据时代的到来。目前,数据的增长速度早已远超硬件能力的增长速度,因此分布式平台的使用成为大数据训练的主流解决方案。遗憾的是,关于随机变分推断的大多研究仍然停留在解决应用数学问题的阶段。而分布式随机变分推断的设计包含更多系统工程问题,如设计数据和模型的
水利水电工程是解决国家“十四五”提出的“碳达峰”和“碳中和”目标的重要措施之一,其中,面板堆石坝作为其主流坝型之一,其需求与发展也将会迎来一个高速发展期。混凝土面板,作为面板堆石坝的防渗结构,属于典型的薄型长条状结构,极易在施工阶段或运行初期产生裂缝。这些裂缝的存在,不仅导致混凝土面板的渗水,而且会显著加速环境中有害离子向混凝土内部的迁移或软水侵蚀下混凝土内部钙离子的溶出等,加剧混凝土面板的劣化程
氢氧化镍(Ni(OH)2)理论比电容高(2 082 F g-1)、环境友好和价格低廉,在超级电容器领域有广阔的应用前景。然而,Ni(OH)2本征电导率很低(~10-17S cm-1),这导致电子传输速率低、反应动力学慢,阻碍了电容性能的提高;电化学反应过程中,Ni(OH)2体积变化较大,降低了其结构稳定性和多循环性能。为了解决上述问题,本文将Ni(OH)2与具有更优异导电性能和电化学性能的材料(石
人字齿行星齿轮传动因其结构紧凑、承载能力强、传动平稳等优点,被广泛应用于航空、舰船和汽车等高速重载的场合。然而,由于其结构复杂、性能影响因素众多,在应用中仍面临诸多技术难点亟待解决。本文针对人字齿行星齿轮传动系统的振动和噪声控制问题,进行了静力学接触分析和动力学响应预测的研究,以期完善基础理论并推动实际应用。为提高齿面接触分析精度,在利用范成法得到齿廓方程的基础上,直接由节点至单元生成三维斜齿轮有
建筑策划是建筑设计理论的重要组成部分,它随着建筑设计思想与工具的发展而不断更新。在包容性社会发展与包容性设计思潮的共同引领下,针对建筑领域中出现的对弱势群体关注不足和实践难以弥合认识的差距,亟需一种在包容理念注入下而形成的新的建筑设计理论,以对实践进行科学引导。本研究选取建筑设计的基本方法论——建筑策划作为研究对象,认为建筑策划包含以包容性价值为基础的策划内容,并对包容理念介入下形成的建筑包容性策
光子自旋霍尔效应(Photonic spin Hall effect)描述了有限宽度的线偏振光束在界面发生反射或折射时,由于光束左旋与右旋圆偏振分量历经不同几何相位(Geometric phase)的影响,散射光场发生自旋分裂的现象。作为光子自旋-轨道相互作用的基本现象之一,光子自旋霍尔效应为自旋光子器件的研究提供了新的思路,也在精密计量、量子信息和微纳光学等领域展现出广阔的应用前景。研究发现当入
电子束焊接技术以其高能量密度、高熔透性、焊接变形区小、易于控制、能焊接难熔及异种金属等传统焊接方法无法替代的优点,在国防、核能、航空航天和大科学工程等重要领域发挥着重要作用。电子束焊接的熔池传热、流体流动及匙孔演变等动力学行为是决定焊缝成形质量的关键。在进行电子束焊熔池和匙孔演变的研究的过程中,数值计算是一种有效的手段,而电子束热源模型的建立是进行数值计算的基础和重要决定因素。现有的理论模型多为解
我国地域广阔,气候复杂,降雪区域覆盖大面积国土。长期降雪天气的密集出现导致雪致工程灾害频发。其中,建筑倒塌由于直接危及人们的生命和财产安全,受到社会的高度关注。究其原因,主要是降雪突增,加之气流作用下形成局部堆雪,超出屋面荷载设计值。大跨空间结构由于屋面结构自重轻、面积大、体型复杂和雪荷载占比大的特点,其设计荷载往往由雪荷载控制,属于雪荷载敏感型结构。遗憾的是我国建筑结构荷载标准主要对简单体型屋面