论文部分内容阅读
作为立国之本、兴国之器、强国之基的制造业,其发展、进步、创新一直是各界关注与研究的重点。随着以云计算、大数据、工业互联网、移动互联网等为代表的新一代信息技术(简称New IT),以及以深度学习、深度强化学习、群体智能等为代表的新一代人工智能技术(简称New AI)的发展,智能制造技术成为当前制造业转型升级的核心驱动力。在智能制造成为现代制造模式的同时,也伴随产生了若干新的制造模式和业态。其中,以按需使用为核心,以用户为中心的云制造成为一种新兴的先进制造业模式。在云制造模式中,云制造平台是智能装备制造商与客户的重要纽带,是推动制造业服务化转型的重要力量。本研究主要基于云制造平台,围绕故障诊断与服务租赁,聚焦制造业转型升级过程中遇到的部分问题,包括:(1)训练数据类型少且分布不均导致的故障诊断模型可靠性差的问题;(2)实际运行工况复杂多变使得训练数据和实际测试数据分布不同导致的诊断模型适用性不高问题;(3)制造资源分配不均而导致的制造资源闲置浪费问题;(4)缺乏科学合理的定价策略而导致无法提供高效租赁服务的问题。本文主要对上述问题展开研究,研究内容和创新点如下:(1)针对故障诊断模型可靠性差和适用性不高的问题,提出基于数字孪生和深度迁移学习的两阶段故障诊断方法(Digital-twin-assisted Fault Diagnosis method using Deep transfer learning,DFDD)。在第一阶段的故障诊断中,通过在虚拟空间建立超高逼真的仿真模型提前模拟设备运行情况,并使用仿真数据充分训练基于深度神经网络(Deep Neural Network,DNN)的故障诊断模型,提前发现在设计阶段未考虑到的潜在问题。在第二阶段的故障诊断中,使用深度迁移学习(Deep Transfer Learning,DTL)算法将在虚拟空间训练的故障诊断模型迁移到物理空间中,用于智能装备的实时监控和预防性维护,既保证了故障诊断的精度,也避免了重新训练模型对时间和知识的浪费。(2)使用改进的樽海鞘算法优化DFDD,解决了故障诊断模型构建依赖人工经验的问题,进一步提高了故障诊断模型的诊断性能。深度迁移学习可在不同分布的数据间进行分类预测,但网络结构参数通过随机初始化或经验性方法获取,效率低且难以保证参数最优。本研究使用改进的樽海鞘算法寻优得出网络初始化参数,包括隐含层节点数和稀疏性参数,实现了对故障诊断模型网络参数的自适应获取。(3)提出云制造下服务租赁模式并构建租赁定价模型,为制造资源分配不均问题提供解决思路。在云制造模式下,将智能装备以服务的形式租赁给客户,并通过对装备的实时监测与故障诊断实现预防性维护,延长设备使用寿命,保证租赁设备的持续健康运行。此种租赁模式可以有效缓解制造资源分配不均问题,实现制造资源的高效利用。本研究还从供需Stackelberg博弈角度建立了租赁定价的双层规划模型,双层规划问题是一类具有主从递阶结构的复杂决策问题,具有NP-hard性。本研究使用带精英策略的非支配排序遗传算法(Nondominated Sorting Genetic Alogorithm II,NSGA-II)求得模型的Pareto最优解,即使供需双方效用最大的租赁和定价策略。(4)对本研究所提的服务模式与方法进行案例验证。本研究以广东某汽车制造商为案例研究对象,对所提故障诊断方法及其优化改进方法进行了验证,结果表明本文所提出的DFDD方法对智能装备健康状况的预测与判断是准确、稳定的,改进的深度迁移学习算法对DFDD的诊断性能也有一定的提升作用。本研究还以某刀具生产厂商为案例对所提服务租赁模式和租赁定价策略进行了验证,结果表明租赁模式和定价策略具有现实意义与实践价值。