论文部分内容阅读
蒽醌染料具有色泽鲜艳、固色率高、染色牢度好等优点,已成为印染业中用量第二大的染料。但由于该类染料废水有机成分含量高、成分复杂和可生化性差,导致现有的处理技术处理效果不理想。因此,建立新的降解方法并形成新的废水处理工艺对蒽醌类染料废水进行处理是急需解决的重大问题。由于光催化氧化法具有矿化彻底、无二次污染等特点,越来越受到人们的重视,光催化氧化法在染料废水处理中具有广泛的应用。本文以微波无极紫外光催化氧化降解过程为研究目标,选择蒽醌染料茜素绿为模型污染物,以微波无极紫外灯为光源,采用微波无极紫外光氧化体系(MW/UV)、非均相微波无极紫外光催化体系(MW/UV/TiO2)和均相微波无极紫外光催化体系(MW/UV/Ce(III))系统地研究模拟染料废水降解过程中分子结构的变化、反应动力学、中间产物和可生化性,重点探讨研究降解过程中产生的活性自由基,并推测其降解机理和降解历程。本研究取得的主要结论如下:(1)在MW/UV体系中茜素绿模拟废水的脱色反应符合一级反应动力学规律。酸性或自然pH条件下染料的降解速率差别不大,碱性pH条件可大大提高降解速率;随着反应温度的提高,反应速率稍有提高,可能是由于光活化后的后续反应对温度敏感所致;光源实验中微波无极紫外灯对染料的脱色作用明显高于传统紫外灯。该体系中除了产生的羟基自由基为主要活性物种外,超氧自由基也参与了染料的光降解反应。在分析中间降解产物的基础上推导了MW/UV体系中自由基的产生机理和染料可能的降解路径。在活性自由基的作用下,茜素绿的C-N键断裂,共轭结构破坏,发色基团脱落现从而实现染料的脱色,形成具有蒽醌母体结构的初级产物;同时磺酸基团脱落最终逐渐形成硫酸根,氨基被进一步氧化最终成硝酸根;羟基自由基连续攻击并氧化初级产物,最后开环形成邻苯二甲酸,再进一步氧化成小分子酸,如甲酸、乙酸、草酸等。通过检测降解过程中茜素绿废水对锦鲤和大肠杆菌的急性毒性实验可知,降解过程中茜素绿溶液的毒性伴随着中间产物的产生先升高后下降。(2) MW/UV和MW/UV/TiO2体系对染料均具有明显的脱色效果,但是MW/UV体系对茜素绿废水的TOC去除效果不理想,反应90min时TOC去除率只有17.07%,而MW/UV/TiO2体系对茜素绿溶液的TOC去除率为82.78%。茜素绿的光催化脱色效率随着TiO2投加量的增加先上升后下降,TiO2最佳使用量为0.8g/L;MW/UV/TiO2体系削弱了染料起始浓度对降解效率的影响,浓度不高于0.24mmol/L时,染料的脱色率可达80%以上,拓宽了AG的浓度范围;pH在3-11范围内,AG的最终脱色效果差别不大,溶液pH为6左右时TOC去除率常数(kTOC%)最大;AG的降解效率随着温度的升高稍有提高。在较低的曝气量时,MW/UV/TiO2体系具有很好的光催化效率。随着光强的增加,AG的脱色效果明显提高,kTOC%与光强呈线性关系。此外,茜素绿模拟废水通过MW/UV/TiO2光催化降解后可生化性得到明显的提高,BOD5/COD由反应前的0.0959提高到0.4009。活性自由基的ESR鉴定分析结果证实MW/UV/TiO2体系中有羟基自由基和超氧自由基的产生,可能是由于TiO2在紫外光照射下表面电子分离产生电子-空穴对,进一步与O2、H2O和OH-等发生一系列反应最终生成羟基自由基和超氧自由基,并将表面吸附的染料进行降解。利用离子色谱、液相色谱、气质谱联用仪和电喷雾-质谱测定了降解过程中AG模拟废水的中间产物,并根据中间产物推测了MW/UV/TiO2体系中茜素绿废水可能的光催化降解历程。(3) MW/UV体系中加入少量的铈离子(Ce(III)),可明显提高茜素绿模拟废水的降解速率,30min后染料可完全脱色。茜素绿模拟废水的降解速率随着Ce(III)浓度的增加明显增加,但是当Ce(III)浓度浓度高于0.5mmol/L时,降解速率增加缓慢;酸性条件下更有利于染料的降解,铈离子催化剂对酸度废水处理具有很大的优势;适当的曝气,有利于染料废水的降解;随着反应温度的提高,反应速率稍有提高;除NO-3外大部分阴离子对染料的降解具有抑制作用;MW/UV/Ce(III)体系对其他蒽醌染料和苯酚均具有较好的降解性能。自由基捕获实验和荧光光谱数据均表明MW/UV/Ce(III)体系中有羟基自由基的产生;根据MW/UV/Ce(III)体系中的活性自由基和Ce(NO3)3溶液降解过程中的紫外可见光谱,推测了MW/UV/Ce(III)体系自由基可能的光催化降解机理。利用液相色谱和电喷雾-质谱测定了降解过程中AG溶液中的中间产物;根据中间产物推测了MW/UV/Ce(III)体系中AG模拟废水可能的光催化降解历程。