双向对称CLLLC谐振型储能变换器研究

来源 :北京交通大学 | 被引量 : 0次 | 上传用户:csnzz
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
为了提高能量的利用效率和改善电能质量,储能技术得到进一步发展,在储能变换器中,DC/DC作为能量传递的重要环节,提高其工作效率至关重要。通过查阅文献,本文总结分析了各种双向DC/DC变换器的特点,确定双向对称CLLLC谐振变换器作为本文研究目标,在传统的分析和控制方法的基础上,针对寄生参数和效率优化等问题进一步深入研究。首先,分析了双向对称CLLLC变换器的拓扑结构和工作原理,利用传统基波分析法建立数学模型,研究其电压增益特性。同时还分析了输出侧开关管的寄生结电容对谐振变换器的工作波形的影响,并分别推导了含有副边开关管寄生结电容、变压器分布电容以及漏感等参数的电压增益公式。结合对寄生参数的具体分析,用于指导在实际电路调试过程中出现的电压增益范围偏移问题的参数修正。其次,阐述了双向对称CLLLC谐振变换器参数设计的优化条件,充分考虑效率、软开关、调频能力以及空载特性等因素,并以2.5k W全桥谐振变换器为例给出流程化的参数设计方案。完成了变换器开关管、高频变压器、谐振电感、谐振电容等主电路元件的设计与选型,建立相应的损耗模型。通过仿真验证调频能力、软开关实现等特性以及各种寄生参数的影响,完成正反向切换仿真验证。再次,介绍了基于软件控制的同步整流控制策略和软启动控制策略,针对全桥电路详细分析了双向对称CLLLC谐振变换器的移相控制策略,并结合变频控制、移相控制提出了基于扩大电压增益范围的变频移相分段混合控制,用移相控制替代原来变频控制中的过谐振区域,初步降低了相应工作区域开关管的关断损耗,并通过仿真验证该控制策略的有效性。传统变频控制在双向工作时不可避免工作于过谐振区域,存在输入侧开关管关断电流大、开关频率高、输出侧二极管反向恢复电流大等缺点,造成双向工作总体效率较低。为了对变换器进行双向效率优化,提出了改进型同步混合控制策略,正向工作于变频控制欠谐振区域,反向工作于同步混合控制准欠谐振区域,正反向具有同样的零电流关断特性。通过仿真计算开关损耗,并同传统变频控制以及DAB进行损耗比较,验证了改进的同步混合控制正反向均具有较高的效率。最后,对本文所研究的谐振变换器进行了实验验证,完成了2.5k W全桥谐振变换器和500W半桥谐振变换器的系统硬件电路的搭建以及软件的设计,对前文提及的变频控制、移相控制以及软启动等动态控制策略进行了实验验证,并通过实验验证了本文提出的基于效率优化的改进型变频移相同步混合控制策略在正反向工作时低压侧开关管均具有同样的零电流关断特性。
其他文献
随着能源消耗与环境保护的矛盾日益突出,以冷热电联供(Combined Cooling Heating and Power,CCHP)为供能核心的综合能源系统(Integrated Energy System,IES)迅速发展。它将电、热、气、冷等不同能量形式的供能系统进行有机融合,对能源领域持续健康的发展具有重要的现实意义。面对新兴的综合能源市场环境,需要发展面向多能源耦合、转换的综合需求响应(I
近年来,随着全球能源危机的日趋严重,越来越多新能源发电系统应用到社会生产、生活中。为了解决光伏、风能等新能源系统发电不稳定问题,需要使用储能系统通过双向DC/DC变换器维持电量稳定。同时,双向DC/DC变换器在电动汽车、直流配电网、航天电源系统等场合有着广泛的应用。如何提升双向DC/DC变换器效率及功率密度,实现宽电压调节范围及正反向能量传输的快速、平滑切换成为近年来双向DC/DC变换器的研究热点
模块化多电平换流器(MMC)以其谐波性能优越、效率高、易扩展等优势,在柔性直流输电、电机驱动、光伏并网等领域受到了广泛的关注。与此同时,作为一种电力电子变换器,MMC由于采用高速半导体器件,在高频开关过程中会产生很高的dv/dt和di/dt,并在其常用调制方法中产生共模电压问题,即共模电压高频跳变。此时,共模电压成为重要的电磁干扰(EMI)源,影响电网二次设备及其设备自身的工作。另外,在电机驱动系
有机金属卤化物钙钛矿太阳能电池由于其高效的转换效率而被人们广泛关注,成为光伏领域最具有前途的材料之一。但是现在可以选择的空穴传输层材料却为数不多,本论文基于p-i-n的钙钛矿太阳能电池结构,比较了应用无机材料CuI和CuSCN作为空穴传输层的电池器件性能,并研究了p-i-n结构常用的聚合物空穴传输层与光功能层的界面接触问题,通过引入CuI修饰层,减少了界面缺陷,改善了钙钛矿结晶态,制备出了高性能的
核电站日常运行及维护过程产生的低放射性固体废弃物高效减容难题长期困扰核电站的可持续发展。低放射性废弃物挥发分和固定碳含量高,使得热解气化技术成为其高效减容的新途径,但是在该技术推广中需要攻克的核心科学问题是如何实现微量核素的固定。本文拟利用同位素替代技术和化学平衡理论研究低放射性废弃物热解气化过程微量核素迁移机理,通过调控温度和压力并采用原位化学固定反应限制微量核素迁移。基于微观/宏观热重实验,探
随着我国经济的高速发展,城市交通问题、环境污染问题日益凸显出来。近年来,末端配送需求的增长让绿色、可持续的城市物流配送受到重视,电动物流车应运而生,但将电动车应用到城市物流配送,仍然面临许多问题,如电动车续航里程较短而导致配送过程可能需要进行一次或多次电能补给,电动物流车充电时间较长而引起的客户满意度降低等。在上述背景下,本文基于电动物流车快速充电(Electric Verhicle with F
近年来新能源汽车快速发展和普及,大量电动汽车的无序快速充电使电网负荷波动增大,这增加了电网的建设成本,并给电网的稳定运行带来了考验。V2G(Vehicle-to-Grid)技术可以实现车网协同动作,通过汽车向电网的能量回馈,实现对电网负荷的削峰填谷。作为V2G技术的关键部分,大功率双向充放电机的性能直接影响了V2G的实现。三相双有源桥变换器具有功率容量大、能量双向流动、可以实现软开关等优势,适用于
柔性钙钛矿太阳能电池(F-PSCs)具有较高的光电转换效率和机械稳定性,在未来的可穿戴电源中显示出巨大的应用潜力。应变工程因金属卤化物钙钛矿材料依赖于结构的特性而成为调控其光电性质的有效途径。基于以上情况,本论文以三维钙钛矿为主体研究了不同弯曲方式及拉伸应力对其光电性质的影响。在研究过程中,我们发现柔性钙钛矿太阳能电池的机械稳定性受到机械弯曲方式的影响。与凸的弯曲方式相比,凹弯曲方式下的柔性钙钛矿
全功率变速抽水蓄能机组具有的快速功率响应特性可以快速平抑新能源功率波动,提高新能源消纳能力,保障供电质量,具有重要的研究价值。然而采用全功率变频调速的抽蓄机组,其发电机与电网解耦,对电网扰动不具备抑制及改善的能力,影响系统稳定性。采用虚拟同步机技术(Virtual Synchronous Generator,VSG)的全功率变速抽蓄机组可以具备与同步发电机同样的惯性、阻尼特性、有功调频、无功调压等
级联H桥多电平变换器凭借其高压大容量、输出波形质量好、易于模块化扩展和易于独立控制各单元输出功率等优点而具有广泛的应用。级联H桥变换器并网应用的主要控制目标包括维持各级直流电压稳定和网侧电流质量。在各级直流侧功率严重不均衡时,如何保证直流侧电压平衡和维持系统的正常运行成为各国学者研究的重点。本文以级联H桥变换器为研究对象,重点研究级联H桥变换器的直流侧电容电压平衡策略和针对过调制问题的功率路由算法