论文部分内容阅读
在临床上涉及到手指肌腱损伤的患者占到手外伤的一半,肌腱在愈合的过程中会发生粘连现象,为了减轻肌腱粘连的程度,帮助手指恢复其运动功能,需要对患指进行康复训练。拇指是人手实现抓握运动功能的关键,失去了拇指,手的功能就损失了近40%。因而本课题旨在设计出一款拇指功能康复的机器人以代替理疗师完成高强度的康复训练工作。首先,设计了拇指康复机器人的机械结构本体。对于拇指指间关节(Interphalangeal Joint,简称IP)、掌指关节(Metacarpal Joint,简称MP)的屈曲/伸展采用了背部式的平面导杆机构;腕骨关节(Carpometacarpal Joint,简称CMC)的内收/外展采用了侧面式的外骨骼结构,通过两个可调定位手柄来使外骨骼关节旋转轴线与CMC关节内收/外展的运动轴线重合;采用了鲍登线的传动方式,实现了动力的远距离传输。此外,建立了机器人的运动学和静力学模型并进行了仿真分析,验证了机械结构的可行性。其次,研究了拇指康复机器人的传感测量系统。针对外骨骼结构空间狭小的问题,设计了一种基于霍尔效应的非接触式角度传感器来检测拇指关节的转角;提出了一种基于鲍登线的弹性力矩传感器用于测量外骨骼关节驱动力矩的大小;分别搭建了标定实验平台,对两种传感器进行了静态标定。另外为减小鲍登线回差特性引起的误差,对力矩传感器的数学模型进行了修正,提高了力矩测量的准确性。然后,完成了拇指康复机器人控制系统的设计。设计了机器人的底层硬件系统,包括传感信号采集模块、电机驱动模块、蓝牙通信模块和供电系统。采用了基于Nios II软核的可编程片上系统来实现对机器人运动的实时控制;设计并完善了人机交互软件,实现了机器人康复训练运动模式切换和运动参数实时可调的功能。最后,对所研制的拇指康复机器人进行了系统实验研究。分别对机器人的机械结构、传感器和控制系统进行了功能验证。在此基础之上,进行了正常人手的康复训练实验,实验结果表明所设计的机器人能够稳定可靠地辅助拇指进行康复锻炼。