一体化小型压水堆中熔融物堆芯滞留仿真研究

来源 :哈尔滨工程大学 | 被引量 : 0次 | 上传用户:lessy123456
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
在IP200小型一体化压水堆的设计方案中,熔融物堆芯滞留(IVR,In vessel melt Retention)措施是保证放射性包络的一道最重要防线。判断IVR成功的基本原则是,下封头壁面向外传热的热流密度,必须低于压力容器外部冷却中当地沸腾的临界热流密度。但在实际的小型堆IVR场景中,真实的熔池热负荷能否低于安全限值,仍有三方面要素值得被仔细斟酌。第一,一体化小堆的自身特性(如堆芯功率密度、冷却剂装量)与事故序列(如安全系统动作、堆芯坍塌时间),将深刻影响严重事故的早期进程,进而改变下封头内熔池的形成过程。如何考虑事故早期进程对熔池形成的累计效应,将影响熔池的初始热状态准确性。第二,压力容器内熔融物冷却的过程中包含了多个复杂现象的相互作用。如何合理地量化上述现象的耦合效应,将直接影响IVR熔池的流动与传热特性。第三,压力容器外部冷却(ERVC,External Reactor Vessel Cooling)回路中冷水的流动特性,对于熔池散热的影响是不容忽视的。所以,下封头壁外的循环冷却也常被分离于内部熔池作为独立环节进行分析。特别是为自然循环提供驱动力的沸腾模式、以及流动潜在的不稳定性两方面因素的影响。为了解决上述三方面的问题,本文开展了以下相关仿真的研究。
  首先,本文对IP200反应堆早期事故进程进行仿真研究。该项研究旨在分析事故早期进程对熔池形成过程的影响。使用事故机理性分析程序SCDAP/RELAP5建立了反应堆及安全系统模型,模拟了SLOCA(SmallbreakLossOfCoolantAccident/小破口事故)叠加ESBO(ExtendedStationBlackOut/长期全厂断电)的极限工况导致的严重事故进程。从堆芯退化一直分析至IVR状态,充分考虑熔化、坍塌等早期现象对熔池初始状态的影响。此外,讨论了IP200自身设计特征与模型差异性对熔池最大热负荷的影响。结果显示,IP200堆的单位热功率储水量较低,严重事故场景下堆芯退化进程发生得很快,从堆芯开始裸露直至局部熔化大约历时9500s。但在熔池形成过程中,堆芯组件并未完全坍塌。该项结论为评价一体化小堆安全分析的包络性提供了可靠参考。
  其次,对IVR熔池自身的流动传热特性进行了仿真研究。由于在机理性程序SCDAP分析中,无法保证一定能模拟出堆芯组件全部熔化坍塌时的最严重熔池场景。因此,这里有针对性地创建了三种新型熔池仿真模型,分别编制程序,用于评估IP200反应堆完全坍塌时不同的IVR特性,包括:瞬态传热特性、流场分布特性、以及分层构型特性。针对熔池瞬态传热特性,本文基于经验关系式的自然对流模型和等温凝固假设下的移动边界模型,创建了熔池瞬态传热分析程序。以LIVE-L5L熔盐实验为对象进行基准题验证计算。特别的,对动态过程中硬壳增长率的计算结果重点讨论。结果显示,等温假设下的移动边界法对于计算熔池边界上的凝固是适用的。由于引入了额外的线性假设使控制方程封闭,单层网格就能获得稳定的凝固界面追踪效果。针对熔池流场特性,研究基于单相自然对流CFD模型与焓守恒相变转换模型,构建出熔池传热与流动的精细化分布参数仿真程序。以BALI切片实验的两个不同稳态工况为基准题,验证了模型与算法适用性。然后,以IP200堆为对象进行熔池试算,依据云图与矢量图讨论了内热功率对流场分区的影响。结果显示,内热增大时,更多的高温流体将汇聚于顶部,将加剧顶部流场的涡旋结构,也削弱底部热分层效应。由于某些情况下,熔融混合物可能会出现金属相与氧化相的分层,进而改变熔池的分层结构。针对熔池分层构型特性,研究基于最终包络状态(FIBS-FInal Bounding State)概念开发了分层熔池构型的传热估算模型。模型中较全面地考虑了两层、三层、水池熔池构型。研究定量分析了氧化层内热功率与金属层特征高度对热负荷分布的影响。也讨论了重金属质量成分、水层膜态沸腾对峰值热流密度的作用效果。这些模型分别实现了凝固相变、流场演化、成层分布三个现象层面的性能突破,可以作为一种较为准确的瞬态熔池分析工具,并入系统级安全分析程序中。
  最后,对熔池外部ERVC回路中自然循环的流动不稳定性进行了仿真研究。使用热工水力程序RELAP5对ERVC的开式循环瞬态流动特性进行了分析,讨论了流动与传热的反馈机制。对比REPEC实验中低加热循环工况进行稳态验证,评价模型对加热段内过冷沸腾引起的两相自然循环现象的适用性。使用RELAP5对IP200堆的ERVC系统建立切片模型,并对自然循环的瞬态流动进行模拟。划分了不稳定流动的高、低过冷度边界,并依据震荡规律对加热段内过冷沸腾引发的流动不稳定性进行机理解释。结果显示,随着入口欠热度降低,自然循环将依次出现稳定-不稳定-稳定的流动状态过渡。增加背压会降低自然循环流量,整体压缩不稳定范围。减小进口阻力系数将增大循环流量,不稳定边界均会向功率升高的方向偏移。该研究也为ERVC回路内的自然循环流动机理研究提供了切入点与分类准则。
  本文通过仿真手段,不仅研究了反应堆宏观结构特性、微观机理特性对熔池传热的影响,也给出了IVR中关键参数的具体数值。此外,本文还初步搭建一套关于小型堆IVR研究的体系方案,旨在为工程小型堆的工程设计提供参考。
其他文献
压水堆是目前世界范围内主流的商用核反应堆。在运行过程中,压水堆堆芯中物理、热工水力等方面存在强耦合作用,因此物理-热工耦合程序的开发是准确评价反应堆物理热工性能的必经之路,不确定性量化是计算软件的验证和确认以及核电厂安全分析的重要步骤。
  以此为背景,本文以压水反应堆为对象,基于商业化计算流体动力学软件FLUENT与中子物理计算程序MCNP,构建了可用于分析压水堆堆芯物理-热工耦合特性的工具。耦合系统使用了Python脚本管理求解程序之间网格映射的数据流,并实现耦合过程的自动化运行。在所建立的分析
钠冷快堆(SFR)是第四代反应堆中最容易实现核燃料增殖和闭式燃料循环的堆型之一。在钠冷快堆蒸汽发生器(SG)中,传热管破裂会导致钠水反应事故。液态钠与水蒸气的表面反应是钠水反应事故研究中的重要课题。本文通过实验对液态钠-水蒸气表面反应进行高速摄像和热工参数测量,分析了不同液态钠初始温度和水蒸气分数条件下对液态钠反应温度、界面状态以及平均质量损耗速率等因素的影响。
  实验结果表明:液态钠-水蒸气表面反应的界面状态分为三个阶段:固态膜层阶段,液膜阶段和光滑阶段。表面反应受到界面状态变化的影响。不同阶段
在压水堆堆芯,燃料组件上都安装了定位格架,其对燃料棒束起到了固定和支撑的同时,也影响着燃料组件的热工水力性能。定位格架一般分为简单格架、不带搅混翼的格架和带搅混翼的格架,由于安装在上面的弹簧、钢凸和搅混翼等部件改变了冷却剂原有的流动方向,使得冷却剂在棒束之间产生了横向流动,强化了冷却剂与燃料棒束之间的换热效率,增强了燃料组件的热工水力性能,但这些细小部件对冷却剂造成流动阻塞,增加了冷却剂的压降。传统上,对于压水堆堆芯棒束通道的数值模拟研究和试验研究,绝大部分都是模拟堆芯高温高压情况下的单相流动换热,对堆芯
当核电厂发生严重事故时,堆芯内熔融物与混凝土发生反应会产生大量的源项放射性裂变产物,最终在安全壳内汇聚。放射性裂变产物主要以气溶胶的形式存在。一旦泄露,就对外界环境安全造成巨大的破坏。因此需要对安全壳内的放射性气溶胶进行去除。当前国内外主要通过自然沉积的形式或使用喷淋系统对气溶胶进行去除。而气溶胶颗粒自身的特性及喷淋液滴的不同都会对其去除产生一定的影响,因而有必要开展气溶胶的自然沉积行为特性和喷淋条件下气溶胶的行为特性的研究。
  本文选用TiO2、BaSO4等颗粒作为气溶胶介质,进行了气溶胶自然沉
气泡广泛存在于工业和环境过程中,气泡到达自由液面存留一段时间后会发生破裂,破裂产生的液滴作为一种关键的液-气转换过程,会对我们的日常生活深远的影响。在核领域中,当发生蒸汽发生器管道破裂甚至是堆芯熔毁等严重事故时,会产生放射性的气溶胶,在气溶胶自然沉降以及安全壳喷淋系统等工程安全设施的作用下,带有放射性的气溶胶会滞留在液池中。当安全壳卸压时,液池会沸腾产生气泡;过滤排放系统中,气体通入液池中同样会在液池中产生气泡。气泡破裂产生的膜液滴可能会将带有放射性的气溶胶由液相夹带至气相。这种持续性很长的行为可能产生相
共沉淀浮选法作为一种放射性废液处理技术,以效率高、费用低的特点被广泛应用。本论文的研究目的是针对共沉淀浮选法中使用的各种表面活性剂辐解稳定性问题,深入研究全氟辛烷磺酸PFOS、十二烷基苯磺酸钠LAS和十六烷基三甲基溴化铵CTAB在电子束辐照下的辐解机理,并对三者的辐解动力学作比较。实验中使用液相色谱-质谱联用技术对辐解中间产物进行定量定性分析,使用离子色谱对辐解过程中产生的无机离子的浓度进行测定。
  本论文的研究表明,PSOS、LAS、CTAB的降解率在碱性条件下较高,数值达93.8%、89.1%
熔盐堆作为第四代先进核能反应堆以其诸多优势在我国日前再度提上议程。对任何一个反应堆而言,安全问题始终举足轻重。作为其中安全性的一道屏障,余热排出系统的安全运行对反应堆至关重要。目前先进反应堆采用非能动余热排出系统,通过自然循环导出堆芯衰变热而使其安全阈值大幅增加。熔盐堆停堆后的堆芯余热导出也应该引入非能动安全设计来提高安全性,而我国的熔盐堆研究还处于初级阶段,因而涉及的非能动余热排出系统的相关热工水力问题的研究还不足。因此,本文针对熔盐堆非能动余热导出过程中的自然循环式套管换热元件内的流动特性,冷凝器管外
棒状燃料组件是目前商用压水反应堆的核心,其性能直接关系到反应堆的运行与安全。受海洋条件影响或堆芯失流工况下的反应堆回路会出现剧烈的流量波动。流量波动使得燃料组件内阻力特性、流场结构和换热特性处于瞬态波动,威胁着核反应堆的反应性控制与热工安全。因此,研究流量波动条件下燃料组件的流动换热特性具有重要的基础研究价值和工程应用背景。本文采用理论分析、实验测量和数值模拟对流量波动条件下燃料组件的棒束通道摩擦阻力特性、定位格架局部阻力特性、流场时空演变和换热特性等开展了研究。
  流量波动条件会引起堆芯燃料组件