【摘 要】
:
太阳能是如今全球快速发展之后尤为受到重视的可持续能源。通过半导体材料利用光能进行催化转化是目前应对当前环境危机最有前景的手段之一。半导体光催化材料经过多年的发展,已经不仅仅局限于无机材料领域,对于有机催化材料的研究兴趣也愈发浓烈。有机半导体催化材料,例如卟啉、酞菁染料、富勒烯、苝系衍生物以及石墨相碳氮化合物(g-C3N4)等等,它们出色的半导体行为、热稳定性以及自组装成有序的纳米结构的特性使它们受
论文部分内容阅读
太阳能是如今全球快速发展之后尤为受到重视的可持续能源。通过半导体材料利用光能进行催化转化是目前应对当前环境危机最有前景的手段之一。半导体光催化材料经过多年的发展,已经不仅仅局限于无机材料领域,对于有机催化材料的研究兴趣也愈发浓烈。有机半导体催化材料,例如卟啉、酞菁染料、富勒烯、苝系衍生物以及石墨相碳氮化合物(g-C3N4)等等,它们出色的半导体行为、热稳定性以及自组装成有序的纳米结构的特性使它们受到了更多的关注。苝酰亚胺(PDI)作为一种典型的苝系衍生物,其带隙值约为1.7 e V,是一种典型的n型可见光响应光催化剂,并且其优异的物理化学性能,使其具有优异的光催化性能。但是对于单一的PDI分子来说,其仍然还存在许多问题,目前,对于PDI分子性能提升的研究有很多,其中主要包括基团改性,利用自组装特性形成超分子,添加助催化剂和构筑异质结等。本工作根据已有成果和当下热点研究了降解过程中构筑Z-型WO3@Cu@PDI超分子异质结对降解效率影响、构建n-n型CeO2-PDI超分子异质结对光生载流子分离效率的影响。主要研究如下:(1)Z-型WO3@Cu@PDI超分子异质结的构筑及其降解性能提升研究。本研究工作首先利用光沉积法制备了WO3@Cu,再利用PDI的自组装特性,制备了WO3@Cu@PDI超分子异质结。实验表明WO3@Cu@PDI超分子具有出色的光吸收能力和光催化降解活性。可见光条件下,最优化WO3@Cu@PDI超分子对于四环素溶液的降解效率是PDI超分子的5倍,WO3的40倍。同时本研究采用XPS、XRD、SEM、TEM、PL、DRS、FTIR、EIS和ESR等物理化学以及电学表征研究催化剂的催化性能。光学和电化学表征都证明了复合材料具有最强的光生载流子分离效率以及低的电子传递阻力,这表明了光生载流子的迁移速率和分离效率的提升。同时,通过牺牲剂实验和ESR表征,证实了Z-型体系中的电子传输路径,揭露了Z-型异质结的形成对于电子空穴分离的增强。(2)本研究利用PDI超分子的自组装特性制备了n-n型异质结CeO2-PDI超分子异质结并详细探究了其光催化降解活性提升的原因。通过异质结的构筑,在两者之间形成特定的内建电场,形成特定的电子传输通道,从而有效加快了电子空穴的转移,从而抑制了光生载流子的重新复合。由于复合材料高的电子空穴分离效率,该催化剂光催化降解速率是纯PDI超分子的5.8倍,纯CeO2的11.7倍,并且具有极强的稳定性(反复反应3次之后,仍然保持80%以上的催化活性)。同时,本实验通过对材料进行XRD、SEM、TEM、XPS、PL、DRS、EIS、光电流和莫特-肖特基曲线等表征对催化剂光催化性能提升原因进行了探究。结果表明,该n-n型异质结结构能够能极大提升光催化降解效率的主要原因是因为异质结中形成的内建电场一定程度上加快了材料受光激发产生的电子空穴的迁移,有效的提升其光生电子空穴对的分离效率,从而能够有效使光生载流子迁移至复合材料的表面,进而有效的增强复合材料的光催化效率。
其他文献
现代电子元件的小型化、高效化、节能化及高速化发展要求软磁材料具有高饱和磁化强度、高磁导率和低损耗的特点,高性能软磁复合材料(SMCs)的开发是满足上述要求的重要手段。为解决目前软磁复合材料存在的磁性能低、损耗高两大关键问题,本文通过在金属软磁粉末表面原位氧化生成高电阻率的亚铁磁层的方法来构建核壳结构复合材料,从而将金属软磁材料的优良磁学性能与亚铁磁性壳层的高电阻率特点相结合,以达到降低涡流损耗并保
钽由于其表面易自发形成Ta2O5氧化膜,使钽拥有优异的耐腐蚀和耐磨损性能,而等离子体电解氧化技术(Plasma electrolytic oxidation,PEO)可在阀金属如铝、镁、锆、钛、钽及其合金表面原位形成一层氧化膜,故钽等离子体电解氧化技术可显著改善其耐腐蚀和耐磨损性能。现今人们对钽等离子体电解氧化成膜已有少量研究,然而其成膜机理一直未被深入研究。本文分别在硅酸盐、铝酸盐、磷酸盐三种体
润滑剂常用来降低机器的摩擦和磨损,从而延长机器的使用年限,降低报废率。随着科技水平和工业生产技术的日新月异,现有的润滑剂已逐渐不能满足当下的生产和生活需要。已经发现,添加剂能够改善润滑剂,满足其在高温,高速、高负荷等各种工作条件下的严格要求。因此在润滑剂中引入添加剂是改善润滑剂性能最主要也是最为有效的手段。但是现阶段研究人员的主要目光集中在高性能添加剂的选择和制备上,对添加剂的最佳含量和减磨机理关
数学已经成为学生在小学学习中的重要学科之一,现阶段小学数学对学生提出了很高的要求,需要学生能全方位地理解小学数学中的知识点。因此,教师需要在小学数学教学过程中开展深度学习,有效帮助学生深入小学数学课堂,从而从课堂中获取更多的知识点。深度学习不仅可以帮助教师有效地开展小学数学教学课堂,还可以提升学生对数学的认可程度,让学生更牢固地掌握数学知识。
广泛使用化石燃料不仅使得能源危机变得更加紧迫,还导致了环境污染和全球变暖等一系列问题,因此急需对清洁、稳定的能源进行有效地开发和利用。乙醇是一种具有高能量密度的可再生绿色能源,可以由生物质大规模生产。直接乙醇燃料电池(DEFC)在催化剂的存在下通过乙醇的氧化反应进行发电,在电化学能量转换中起着重要的作用。但是,DEFC的性能在很大程度上取决于电催化剂。因此,开发具有优异催化活性和稳定性且成本低廉的
随着计算机相关产业的飞速发展,特别是移动互联网的出现,计算机所要处理的数据不仅在规模上越来庞大,在结构上也越来越复杂。大数据成为当今社会的热点。而图作为一种常见的数据结构,通过将个体抽象为图中的顶点,个体间的关系抽象为图中的边,很多数据都开始以图的形式存储起来。图计算即是要发现这些规模庞大、结构复杂的图数据中的关系,并对其进行分析和计算。借助图计算,人们可以解决许多日常生活中难以解决的问题。尽管科
近年来,由于四环素类抗生素和磺胺类抗生素广泛使用,使其在地表水,地下水和污水处理厂废水中严重残留。这些抗生素即使在低浓度下也可以损害生物和人体健康,但传统的水处理技术并不能将它们完全去除。光催化技术以太阳能为驱动力,以安全易获取的半导体材料为催化剂,在解决环境问题上展现巨大潜力。最近,基于金属有机框架热解衍生物为催化材料的光催化剂,由于其可控的结构和开放的扩散通道引起了研究者的极大兴趣。通过在一定
N1-甲基腺嘌呤(N1-methyladenine,1mA)和N6-甲基腺嘌呤(N6-methyladenine,6mA)是一类重要的DNA甲基化修饰。6mA天然存在于人类基因组中,并且有可能作为一种新型的表观遗传修饰。然而,关于1mA和6mA在人类细胞内DNA转录过程中的生物学效应尚属未知。本文中,采用穿梭载体策略结合第二代测序技术,我们系统地研究了1mA和6mA对体外转录和人类细胞内转录效率和
盐湖卤水中的锂资源在新能源的发展中具有十分重要的地位。但盐湖和海水中具有很多共存离子,在提取锂的过程中共存离子不可避免会产生影响。同时由于Mg2+与Li+具有相似的离子半径和水合半径,这严重干扰了Li+的分离与提纯,特别是高镁锂比盐湖中锂资源的分离和提纯。因此,如何有效地从高Mg/Li比卤水中进行镁锂分离和提取是我国新能源产业的战略性问题。基于石墨烯的仿生人工离子渗析膜的开发是目前离子分离、海水淡
堆积磨料作为一种新型团聚磨料,在磨削过程中以多层磨料参与磨削,能显著提高磨削效率和加工表面质量,解决普通单颗粒金刚石磨料加工过程中自锐性差、加工效率低、加工表面质量差等问题,在精密磨削加工领域具有广阔的应用前景。本文分别采用溶胶-凝胶法和熔融法制备陶瓷结合剂及相应的陶瓷金刚石复合材料,对比了制备方法对陶瓷结合剂及复合材料结构和性能的影响,并对制备方法的作用机理给出相应的解释。进而采用离心喷雾干燥法