【摘 要】
:
钽由于其表面易自发形成Ta2O5氧化膜,使钽拥有优异的耐腐蚀和耐磨损性能,而等离子体电解氧化技术(Plasma electrolytic oxidation,PEO)可在阀金属如铝、镁、锆、钛、钽及其合金表面原位形成一层氧化膜,故钽等离子体电解氧化技术可显著改善其耐腐蚀和耐磨损性能。现今人们对钽等离子体电解氧化成膜已有少量研究,然而其成膜机理一直未被深入研究。本文分别在硅酸盐、铝酸盐、磷酸盐三种体
【基金项目】
:
国家自然科学基金(51671084);
论文部分内容阅读
钽由于其表面易自发形成Ta2O5氧化膜,使钽拥有优异的耐腐蚀和耐磨损性能,而等离子体电解氧化技术(Plasma electrolytic oxidation,PEO)可在阀金属如铝、镁、锆、钛、钽及其合金表面原位形成一层氧化膜,故钽等离子体电解氧化技术可显著改善其耐腐蚀和耐磨损性能。现今人们对钽等离子体电解氧化成膜已有少量研究,然而其成膜机理一直未被深入研究。本文分别在硅酸盐、铝酸盐、磷酸盐三种体系中,研究了钽PEO的成膜过程及伴随的火花放电行为,进一步分析了三种体系中PEO处理得到氧化膜的耐腐蚀和耐磨损性能,同时探究了钽等离子体电解氧化膜着色工艺及原理。在8g/l Na Si O3·9H2O+1g/l KOH电解液中,发现时间-电压曲线中负电压的上升伴随着氧化膜结构和火花形貌的改变,通过探究负电压上升前后的膜层恒压波形和阴极极化行为,得出负电压变化伴随形貌变化的行为发生在PEO过程,且受阳极电位的影响,由于阳极脉冲放电过程产生的氧气附在放电通道口阻挡了阴极放电氢气析出,导致析氢过电位增加,PEO膜层结构由“瘤子”状转变为更致密的“饼”状结构,PEO后期非晶的Si O2直接沉积在氧化膜表面形成了“珊瑚”状结构。在10g/l Na Al O2+2g/l KOH电解液PEO过程中,由于氧化膜放电通道内的局部高温,α-Al2O3大量产生于放电通道内,形成了厚度更大的双层氧化膜结构,外层膜为含α-Al2O3多孔层,内层膜为更致密的Ta2O5膜。而在10g/l Na3PO4·12H2O+2g/l KOH电解液中,由于磷酸盐电解液电导率弱,PO43-不参与成膜,PEO过程形成了厚度很小的膜层。三种电解液体系中形成的PEO膜层都显著地改善了钽的耐腐蚀性能,其中铝酸盐电解液中PEO处理10min的样品腐蚀电流密度为1.03×10-9Acm-2,在3.5wt%Na Cl溶液中浸泡160天后阻抗为1.03×108Ωcm2,耐腐蚀性能最好,这归因于其致密的内层膜。相比较于基体钽,耐腐蚀性改善了3个数量级。PEO形成的膜层与基体相比,耐磨损性能改善明显,磨损机制由磨料磨损转变为粘着磨损。硅酸盐电解液和铝酸盐电解液中PEO处理10min的样品磨损试验后膜层未被破坏,摩擦系数分别为0.42和0.58,其中硅酸盐电解液中PEO处理10min的膜层磨损率为1.97×10-5mm3/(N·m),比基体钽改善了1个数量级。在等离子体电解氧化处理前期,钽表面形成了阳极氧化膜,钽阳极氧化膜在光的干涉效应下呈现出丰富多彩的颜色,氧化膜颜色的变化受处理电压控制。
其他文献
陶瓷金属化是将陶瓷的高强度、高硬度、耐酸碱、耐腐蚀、绝缘性和金属材料的导电、导热、便于钎焊封装等特性结合起来,陶瓷金属化器件在航空航天、微电子封装、生物医药、化工、冶金、真空电子、新能源领域得到了广泛应用。陶瓷基体的密度、气孔率和玻璃相含量以及基体与金属化层的润湿性、热膨胀系数的匹配性对陶瓷金属化制品的性能具有重要影响。本文探讨了不同密度、气孔率、玻璃相含量的Al2O3陶瓷基体对金属化后试样微观结
高镁含量的Al-Mg系合金密度低、比强度高,但进行熔化焊时接头的塑性和焊接系数均很低,这对其应用极为不利,因此,研究并解决这一瓶颈问题对此类材料的推广应用具有重要的意义。搅拌摩擦焊是一种能够获得高质量、高性能焊缝的新型固相焊接技术。近年来,国内外学者对中、低镁含量5xxx系铝合金的搅拌摩擦焊技术进行了广泛的研究,但关于高镁含量的5A12铝合金搅拌摩擦焊技术的研究尚未见报道。本文以2mm厚的5A12
微反应器作为微反应技术的核心部件,因在混合效率、换热效率、放大过程以及安全性方面所显示出的独特优势成为当今化工领域的研究热点之一。目前传统电加热供温易使反应过程出现效率低、能耗高及副产物多等问题,极易影响微反应器优势的发挥。因此,寻找更高效、更环保的加热方式来保证微反应器性能最大化成为关键点和难点。基于纳米铁氧体在外交变磁场中的磁致发热特性,本文通过3D打印技术制备了孔径可控的纳米铁氧体微反应器,
在高速铁路建设和铁路干线提速过程中,铁路安全检测是保证列车正常安全运行的重要手段。道岔是铁路线路变更的转换设备,作为高速铁路的重要组成部分,同时也是铁路轨道结构中最为薄弱的环节,道岔的安全状况影响列车的行车安全和行车速度,道岔结构的可靠性直接关系到铁路安全。尤其是道岔尖轨的密贴度直接影响行车安全,所以对道岔参数进行准确检测尤为重要。传统人工对道岔进行定期巡检的方式受人工主观性影响较大,测量结果不准
镁合金是重要的汽车轻量化材料,被誉为“最具发展前景的汽车轻量化材料”。随着汽车轻量化要求的提高,必然存在钢铁材料和镁合金连接问题。但钢和镁的热物理化学性质差异大、搭接接头界面结合力弱的问题,开展“钢上镁下”搭接、钢\镁之间添加金属箔片的激光熔化焊接实验和相关机理研究。选题具有理论意义和实际应用价值。论文采用激光熔化焊接的方式,对1.4mm厚的DP590双相钢板材和1.5mm厚的AZ31镁板材进行“
SiC是第三代半导体中的典型代表者,呈现出许多优异的特性,其中良好的稳定性尤为突出,使得其在研发使用于苛刻条件下的光电器件具有独特优势。SiC低维纳米材料除了具有SiC自身的优异特性,还具有纳米材料所独有的优势,为开发性能优异且高效的光电器件提供了进一步的支持。本论文通过对4H-SiC单晶片进行阳极氧化制备了4H-SiC纳米阵列,并精细调控了所形成的4H-SiC纳米阵列的形貌。以此为基础,探究了4
高铬铸铁作为广泛应用的耐磨材料,具有强度高、耐磨性好等优点。高体积分数的M7C3型硬质相与相对韧性较好的铁基体(通常为奥氏体和马氏体)的结合是高铬铸铁具有优异耐磨性的主要原因,然而实际应用表明,高铬铸铁面临的主要问题仍然是硬度和韧性的良好平衡。普通铸造高铬铸铁的显微组织中含有大量锋利的菊花状碳化物,实际上起到了应力集中的作用,从而使韧性变差。为了改善碳化物的形态,采用粉末冶金方式制备烧结高铬铸铁,
汽车车身的减重已成为当前汽车技术提升的热点研究方向,铝、镁等合金在汽车上的应用不可避免涉及两者之间的连接,论文针对铝、镁合金搭接接头激光焊存在铝镁脆性化合物相的问题,开展中间层和焊接工艺参数对铝/镁激光焊接组织性能的影响研究,选题具有重要的理论意义和实际应用价值。本文以6061铝合金和AZ31B镁合金板材为研究对象,以提高镁/铝异种合金接头强度为初衷,选取了高熔点Ti、Ni夹层,采用镁上、铝下的搭
随着5G时代的到来,高功率电子元器件对散热能力提出了更高的要求,具备高的热导率,以及可调热膨胀系数的金刚石/铜(Diamond/Cu)复合材料,被誉为下一代电子封装材料的首选。但金刚石和铜之间高的界面热阻成为了遏制Diamond/Cu复合材料热导率进一步提高的瓶颈。本文首先通过熔盐刻蚀工艺对金刚石颗粒的表面形貌进行精准、有序调控,在得到高表面积金刚石颗粒的基础上,采用真空热压烧结法制备了38%vo
现代电子元件的小型化、高效化、节能化及高速化发展要求软磁材料具有高饱和磁化强度、高磁导率和低损耗的特点,高性能软磁复合材料(SMCs)的开发是满足上述要求的重要手段。为解决目前软磁复合材料存在的磁性能低、损耗高两大关键问题,本文通过在金属软磁粉末表面原位氧化生成高电阻率的亚铁磁层的方法来构建核壳结构复合材料,从而将金属软磁材料的优良磁学性能与亚铁磁性壳层的高电阻率特点相结合,以达到降低涡流损耗并保