论文部分内容阅读
提高燃气轮机循环热效率是当前能源动力领域的研究热点。传统燃气轮机燃烧室采用基于布雷顿循环的等压燃烧加热过程,燃烧过程熵变大,极大限制了循环热效率的进一步提高。旋转爆轰燃烧具有等容燃烧加热的特点,燃烧过程自增压、熵变小、污染物生成量少。燃气轮机采用旋转爆轰燃烧技术,将使其具有等容加热循环的高循环热效率,又兼具体积小、重量轻、单机功率大、振动噪声小等固有优势。目前关于燃气轮机旋转爆轰燃烧技术的研究尚处于起步阶段,旋转爆轰燃烧室特性参数的系统性研究以及旋转爆轰燃气轮机循环理论研究均不完善。因此,进一步开展旋转爆轰燃烧室基本特性研究,构建旋转爆轰燃烧室总体性能预测模型,对完善旋转爆轰燃气轮机热力循环模型理论、推进燃气轮机循环的技术变革具有重要的理论意义和学术价值。
本文对氢气-空气、甲烷-空气旋转爆轰燃烧场进行了数值模拟研究,并开展了氢气-空气旋转爆轰燃烧的实验研究,分析了进气条件、结构尺寸等可控边界条件对旋转爆轰燃烧场基本特性的影响,构建了旋转爆轰燃烧室数学模型,对旋转爆轰燃气轮机循环特性进行了系统研究。具体研究内容如下:
(1)为探究旋转爆轰燃烧场发展过程和增压特性,开展了氢气-空气旋转爆轰燃烧实验以及氢气-空气、甲烷-空气旋转爆轰燃烧数值研究。实验中在空气进气总压430kPa条件下氢气-空气旋转爆轰波最大速度为1456.1m/s,并发现燃烧室在点火后存在不稳定发展阶段。数值研究中进一步发现在氢气-空气旋转爆轰燃烧室不稳定阶段中存在爆轰波对撞、激波对撞、爆轰波和激波对撞三种对撞形式,其中爆轰波和激波对撞后逐渐形成相对稳定的燃烧场,而爆轰波对撞后出现熄爆现象;熄爆后局部高压区的出现和发展导致再起爆后爆轰波方向发生随机变化;甲烷-空气旋转爆轰燃烧室不稳定阶段中存在爆轰波和激波对撞、爆轰波和火焰锋面对撞两种对撞形式,并未出现熄爆现象,且爆轰波和火焰锋面对撞后出现斜激波。
(2)旋转爆轰燃烧室的增压特性与过程熵变以及吉布斯自由能变化有直接联系;燃烧场内复杂波系(斜激波、透射激波、爆燃区等)导致工质在经历旋转爆轰燃烧增压后继续出现明显的熵增加;计算工况下甲烷-空气旋转爆轰燃烧室增压比为2.0664,与等容燃烧(5.6278)存在明显差距。
(3)为进一步探索旋转爆轰燃烧特性的变化规律,利用数值研究手段,基于二维欧拉方程,对甲烷-空气旋转爆轰燃烧特性参数在不同进气总压、总温、当量比以及燃烧室轴向尺寸下的变化情况进行了系统研究。发现燃烧室增压比与进气当量比正相关,与进气总温、轴向尺寸负相关,而与进气总压无明显关系;比质量流量与进气总压正相关,与进气总温、进气当量比负相关;燃烧效率在各种条件下无明显变化,均超过99.5%。
(4)在甲烷-空气旋转爆轰燃烧增压特性产生机理和影响因素研究的基础上,提出了直接掺混式旋转爆轰燃气轮机循环方案和级间抽气式旋转爆轰燃气轮机循环方案。结合旋转爆轰燃烧室数值模拟计算和燃气轮机循环仿真计算,采用控制变量法,研究了不同限制条件下(定甲烷质量流量、定涡轮进口总温、定燃烧室通流面积),压气机压比、压气机效率、涡轮效率、涡轮进口总温、燃烧室进气当量比、以及压气机抽气位置六个因素对旋转爆轰燃气轮机的影响。结果表明两种方案较传统燃气轮机在循环热效率和循环净功上均有明显提高,且前者效果更好;在各因素变化幅度相同的条件下,涡轮效率和抽气位置是对循环净功、循环热效率增量影响最大的因素,而旋转爆轰燃烧室当量比带来的影响最小。
(5)基于旋转爆轰燃烧室特性参数的影响因素分析构建了旋转爆轰燃烧室数学模型,最终建立了甲烷-空气旋转爆轰燃气轮机循环计算模型。发现在涡轮进口总温为1450K时,循环热效率达到0.3859,循环净功达到10966.0kW,对比传统燃气轮机循环分别提高了0.0248(6.87%)和1304.4kW(13.50%),压气机压比减小了2.2324(15.95%);随着工况降低循环热效率和循环净功的增量逐渐增大,但压气机压比减小量逐渐减小;在涡轮进口总温为1279K时,循环热效率和循环净功的增量分别达到0.0539(17.92%)和1603.2kW(25.76%)。研究了燃烧室通流面积和环境温度对旋转爆轰燃气轮机循环特性参数的影响;利用循环特性参数增量变化敏感性计算法定性分析了不同工况下旋转爆轰燃气轮机循环特性参数增量的变化趋势。所有计算结果均表明旋转爆轰燃气轮机循环性能参数在不同计算工况下相对于传统燃气轮机有显著优势。
本文对氢气-空气、甲烷-空气旋转爆轰燃烧场进行了数值模拟研究,并开展了氢气-空气旋转爆轰燃烧的实验研究,分析了进气条件、结构尺寸等可控边界条件对旋转爆轰燃烧场基本特性的影响,构建了旋转爆轰燃烧室数学模型,对旋转爆轰燃气轮机循环特性进行了系统研究。具体研究内容如下:
(1)为探究旋转爆轰燃烧场发展过程和增压特性,开展了氢气-空气旋转爆轰燃烧实验以及氢气-空气、甲烷-空气旋转爆轰燃烧数值研究。实验中在空气进气总压430kPa条件下氢气-空气旋转爆轰波最大速度为1456.1m/s,并发现燃烧室在点火后存在不稳定发展阶段。数值研究中进一步发现在氢气-空气旋转爆轰燃烧室不稳定阶段中存在爆轰波对撞、激波对撞、爆轰波和激波对撞三种对撞形式,其中爆轰波和激波对撞后逐渐形成相对稳定的燃烧场,而爆轰波对撞后出现熄爆现象;熄爆后局部高压区的出现和发展导致再起爆后爆轰波方向发生随机变化;甲烷-空气旋转爆轰燃烧室不稳定阶段中存在爆轰波和激波对撞、爆轰波和火焰锋面对撞两种对撞形式,并未出现熄爆现象,且爆轰波和火焰锋面对撞后出现斜激波。
(2)旋转爆轰燃烧室的增压特性与过程熵变以及吉布斯自由能变化有直接联系;燃烧场内复杂波系(斜激波、透射激波、爆燃区等)导致工质在经历旋转爆轰燃烧增压后继续出现明显的熵增加;计算工况下甲烷-空气旋转爆轰燃烧室增压比为2.0664,与等容燃烧(5.6278)存在明显差距。
(3)为进一步探索旋转爆轰燃烧特性的变化规律,利用数值研究手段,基于二维欧拉方程,对甲烷-空气旋转爆轰燃烧特性参数在不同进气总压、总温、当量比以及燃烧室轴向尺寸下的变化情况进行了系统研究。发现燃烧室增压比与进气当量比正相关,与进气总温、轴向尺寸负相关,而与进气总压无明显关系;比质量流量与进气总压正相关,与进气总温、进气当量比负相关;燃烧效率在各种条件下无明显变化,均超过99.5%。
(4)在甲烷-空气旋转爆轰燃烧增压特性产生机理和影响因素研究的基础上,提出了直接掺混式旋转爆轰燃气轮机循环方案和级间抽气式旋转爆轰燃气轮机循环方案。结合旋转爆轰燃烧室数值模拟计算和燃气轮机循环仿真计算,采用控制变量法,研究了不同限制条件下(定甲烷质量流量、定涡轮进口总温、定燃烧室通流面积),压气机压比、压气机效率、涡轮效率、涡轮进口总温、燃烧室进气当量比、以及压气机抽气位置六个因素对旋转爆轰燃气轮机的影响。结果表明两种方案较传统燃气轮机在循环热效率和循环净功上均有明显提高,且前者效果更好;在各因素变化幅度相同的条件下,涡轮效率和抽气位置是对循环净功、循环热效率增量影响最大的因素,而旋转爆轰燃烧室当量比带来的影响最小。
(5)基于旋转爆轰燃烧室特性参数的影响因素分析构建了旋转爆轰燃烧室数学模型,最终建立了甲烷-空气旋转爆轰燃气轮机循环计算模型。发现在涡轮进口总温为1450K时,循环热效率达到0.3859,循环净功达到10966.0kW,对比传统燃气轮机循环分别提高了0.0248(6.87%)和1304.4kW(13.50%),压气机压比减小了2.2324(15.95%);随着工况降低循环热效率和循环净功的增量逐渐增大,但压气机压比减小量逐渐减小;在涡轮进口总温为1279K时,循环热效率和循环净功的增量分别达到0.0539(17.92%)和1603.2kW(25.76%)。研究了燃烧室通流面积和环境温度对旋转爆轰燃气轮机循环特性参数的影响;利用循环特性参数增量变化敏感性计算法定性分析了不同工况下旋转爆轰燃气轮机循环特性参数增量的变化趋势。所有计算结果均表明旋转爆轰燃气轮机循环性能参数在不同计算工况下相对于传统燃气轮机有显著优势。