【摘 要】
:
近年来,在机器学习等领域中,针对图像数据的分类识别已经成为广大研究者的重点关注问题。传统的算法大都基于欧氏空间计算样本相似性,虽然简单有效,但是由于没有考虑图像数据的高维、稀疏和流形等特性,无法准确地度量样本点之间的相似性。越来越来多的研究者基于黎曼流形的度量学习方法展开了大量的研究工作。流形假设是指人类所看到的数据为嵌入在高维空间中的低维流形。相对于传统算法而言,黎曼流形度量学习可以很好的利用样
论文部分内容阅读
近年来,在机器学习等领域中,针对图像数据的分类识别已经成为广大研究者的重点关注问题。传统的算法大都基于欧氏空间计算样本相似性,虽然简单有效,但是由于没有考虑图像数据的高维、稀疏和流形等特性,无法准确地度量样本点之间的相似性。越来越来多的研究者基于黎曼流形的度量学习方法展开了大量的研究工作。流形假设是指人类所看到的数据为嵌入在高维空间中的低维流形。相对于传统算法而言,黎曼流形度量学习可以很好的利用样本数据的非线性结构特征,找到合适的度量进行相似性计算。同时能够直接对图像集进行流形建模,保持其内在几何结构,提取更加完备的特征信息。针对上述问题,本文主要研究内容为:1.基于Grassmann流形的度量学习方法。首先,将图像集通过子空间建模构建Grassman流形,利用投影映射降维到更具判别性的低维空间中,然后通过建立正则项,将原始流形上的元素矩阵转换成对称正定矩阵,并定义散度矩阵,在对数欧氏空间中,设计目标函数使得类内样本点之间的距离更加紧密,类间样本点的距离更加分离,实现图像数据集的分类识别。该算法在多个数据集上进行验证,得到了较好的实验结果。2.基于多流形融合的度量学习方法。该算法采用子空间、协方差对图像集进行多流形建模,并通过黎曼度量将多种特征映射到高维核空间中进行融合,增加特征的互补性,并提出一种基于Log Det散度的目标函数,计算马氏度量矩阵,使得类间样本距离增加,同时减小类内样本点距离。该算法在多流形图像数据集上取得了较好的实验结果。3.设计并实现了一个针对本文所提出的黎曼度量学习算法的可视化系统。该系统主要包括四个模块:数据模块、算法模块、日志模块和可视化模块,包含了本文所提出的两个算法和经典的度量学习算法,不仅可以将数据进行可视化,还可以调整参数的数值展示参数对实验结果的影响。并且数据集和算法都可以进行添加,具有较强的可扩展性。
其他文献
随着山西省经济的快速发展、基础设施的不断完善,物流业迎来了迅猛发展的契机,相关部门和各个企业也越来越关注物流业的发展状况。经过多方的努力,山西省物流业正逐渐改变“散、小、乱、差”的局面,不断向现代物流业转变。但由于种种原因,山西省物流业仍存在诸多问题,如:物流成本一直居高不下,占山西省GDP的比重一直高于全国平均水平;物流企业的竞争力有限、信息化程度不高、资源整合的能力差等。究其原因,山西物流标准
谣言的传播过程往往存在一些随机扰动,这些扰动时刻影响着谣言的传播趋势,因此研究随机扰动下的谣言模型,对控制谣言的传播具有非常重要的意义.基于此,本文主要研究随机扰动下两类谣言模型的渐近行为.第一章,介绍了随机谣言模型的研究动态,并给出本文主要研究的内容.第二章,建立了下列随机谣言模型(?)首先,利用停时证明了该模型全局正解的存在唯一性;然后通过构造Lyapunov函数研究了该模型无谣言平衡点的p阶
交通基础设施是经济社会发展的先行资本。交通基础设施的建设和完善能够促进要素在空间范围内迅速流动,加快人力、物力、资本的自由流动速度,降低运输成本,提高流通速率。物流业的快速发展依赖于物流效率的提高,交通基础设施作为物流要素流通的载体,在一定程度上形成了物流业发展的合力和动力,所以研究我国交通基础设施对物流业发展的影响有着很强的现实意义。基于交通基础设施的外部性和网络状特性,不考虑空间效应会在一定程
机器自动情绪识别因其在人机交互中的潜在应用而受到越来越多的关注。目前,情绪识别可通过多种信息来实现,如面部表情、语音语调、身体姿态以及人体各种生理信号等。相比较而言,皮层脑电作为中枢神经生理信号,调节与情绪相关的递质分泌和大脑的边缘系统,能够客观反映人的情绪状态变化,从脑电信号中提取有效特征并进行情绪识别在人机交互和精神心理疾病监测中具有重要意义。论文针对维度情感模型的构建以及脑电信号情绪识别中特
5G网络发生故障可能影响全网稳定性和服务质量,其故障发现与修复是5G网络运维管理的关键之一。基于历史故障发生前的网元关键绩效指标(Key Performance Indicator,KPI)变化以及设备告警信息、指标统计特征、自动异常检测、指标关联特征、告警编码特征等,提出了5G核心网网元多维特征融合故障预警方法,构建了多维特征空间训练故障预警模型。最后,针对现网运行数据,选取了6类网元并进行了实
图像的深度估计是计算机视觉领域一个重要的研究课题。挖掘二维图像中的深度信息,可以帮助计算机理解场景的三维结构,在智能机器人技术、虚拟现实、增强现实、场景的三维重建、汽车自动驾驶等众多领域都有广泛的应用。相较于基于双目、多目的深度估计方法,基于单目图像的深度估计对设备和环境要求较低且易于实现,因此具有更加广泛的应用价值。然而,只通过单个视角的二维图像估计三维的立体信息,从几何计算的角度来看是非常巨大
人们生活水平的提高以及商品的种类的增加,使得消费者对于商品的要求也越来越高。其中,琳琅满目的商品种类和对商品五花八门的描述,使得对于商品识别的研究也有了越来越重要的现实意义。本文基于深度学习的方法对商品图像识别以及商品图像中的文本识别进行了相关研究,与传统的图像识别以及文本识别算法对比,利用基于卷积神经网络的图像及文本识别算法进行分析,提出本文研究方法。1)为了降低噪声对图像识别准确率的影响,本文
深度学习在图像识别、机器视觉、自然语言处理等领域取得了巨大的成功,解决了很多复杂的难题,使人工智能技术取得了革命性的突破。然而,复杂的深度模型日益出现“膨胀”的趋势,模型越来越大、越来越复杂,对计算力要求也越来越高。如何有效地减少复杂模型的参数量和推理时间成为目前人工智能亟待解决的关键问题。特别是深度模型在在线学习、增量学习等实时应用与移动手机、可穿戴设备等这些边缘人工智能设备上的实施与部署,如何
计算机断层成像(Computed Tomography,CT)的出现,极大地促进了医学影像技术的发展,对于各种疾病的诊断治疗,也具有十分重要的意义。因X射线的辐射对人体有潜在的致病风险,因此低剂量CT成为了当前研究的重点。稀疏重建,即用从稀疏角度下采集的投影重建图像,是实现低剂量CT的有效方法,然而,经典的解析法稀疏重建的图像中一般含有严重的条状伪影,导致无法进行正确的疾病判读。2006年以来,深
传统监督学习方法需要利用大量有标记的样本进行学习,但是得到具有较强泛化能力的模型往往需要大量的标记样本。在许多学习任务中,标记样本的获取需要大量的人力物力,相对而言无标记样本的获取却较为容易。半监督学习正是一种综合利用标记样本和无标记样本进行学习的方法。目前,半监督深度学习中的研究热点之一集中在一致性假设的应用。所谓一致性假设,是指在模型训练过程对样本进行数据增强,并保证数据增强前后的模型预测结果