【摘 要】
:
气敏传感器能对易燃易爆、有毒有害气体等进行检测,在当今的生活和生产中有着广泛的应用。气敏传感器的性能主要由气敏材料决定,金属氧化物半导体材料具有良好的光电性能,并具有制备工艺简单、绿色环保等特点,目前已成为气敏传感材料领域研究的热点。ZnSnO3是一种三元金属氧化物半导体材料,不仅具有气敏性能,还具有UV光电性能。但ZnSnO3作为气敏材料,具有工作温度高的缺点,需在200℃以上才能表现出良好的气
论文部分内容阅读
气敏传感器能对易燃易爆、有毒有害气体等进行检测,在当今的生活和生产中有着广泛的应用。气敏传感器的性能主要由气敏材料决定,金属氧化物半导体材料具有良好的光电性能,并具有制备工艺简单、绿色环保等特点,目前已成为气敏传感材料领域研究的热点。ZnSnO3是一种三元金属氧化物半导体材料,不仅具有气敏性能,还具有UV光电性能。但ZnSnO3作为气敏材料,具有工作温度高的缺点,需在200℃以上才能表现出良好的气敏性能。针对这一问题,本课题采用了以下方法,不仅降低了ZnSnO3的工作温度,而且还提高了其气敏性能。首先,在有机功能添加剂二甲基乙酰胺(Dimethylacetamide,DMAC)的作用下,采用共沉淀法制备出Zn Sn(OH)6纳米球颗粒(粒径为300-500 nm);其次,上述Zn Sn(OH)6前驱体在500℃高温下脱水形成ZnSnO3纳米球,形貌和粒径保持不变;最后,使用UV光敏材料纳米TiO2(粒径约为25 nm)和CeO2(粒径为20-50 nm)对ZnSnO3纳米球进行修饰,形成异质结,并辅以紫外光(385 nm)照射。实验结果表明,385 nm紫外光(468 lx)对TiO2-ZnSnO3复合材料的气敏性能提升效果比365 nm紫外光(420 lx)更明显;DMAC添加量为9 wt%、nano-TiO2的修饰量为12.5 wt%、nano-CeO2的修饰量为1 wt%时,TiO2-CeO2@ZnSnO3复合材料在紫外光(385 nm)照射下对乙醇气体极为敏感,响应值高达603(500ppm),此时的工作温度为100℃。机理研究表明,气敏性能在低温下提升的主要原因是:nano-TiO2和nano-CeO2共修饰与ZnSnO3在界面处形成异质结,在紫外光激发时有效地抑制了电子-空穴对的复合,同时由于高照度(468 lx)能产生更多的光电子,这些条件有利于导带中电子数量的增加,促进氧负离子的生成和气敏反应的进行,使ZnSnO3在低温下就获得较好的气敏性能。综上,本课题制备了ZnSnO3纳米球,通过nano-TiO2和nano-CeO2共修饰,辅以紫外光照射,不仅降低了所制备气敏传感器的工作温度,而且显著提升了气敏响应值。以上TiO2-CeO2@ZnSnO3复合材料的制备方法以及提升气敏性能的方法为高性能气敏传感器的研究提供了新思路。
其他文献
化石燃料的大量燃烧引起的环境问题已经不容忽视,清洁能源氢气的使用成为有效解决的办法。光电化学(PEC)分解水制氢是最具发展前景的制氢策略之一。在整个水分解体系中,光电极的设计与开发是优化光能转化为氢能的关键环节。在众多的金属氧化物半导体中,单斜相的BiVO4具有良好的光电化学稳定性、无毒、适当的禁带宽度并且在可见光范围内有较强吸收等优点,近年来引起了广泛的关注。但是,在实际的研究中BiVO4的光电
二氧化碳(CO2)光催化还原技术因兼具解决能源和全球变暖问题的潜力而受到关注。金属铁络合物作为分子型催化剂,具有价格低廉、量子效率高、结构可调控和选择性好等优势,表现出优异的CO2光催化还原性能,成为CO2光催化还原领域的研究热点。本文综述了近年来基于金属铁络合物光催化二氧化碳还原研究进展。介绍了铁金属络合物(如:铁卟啉、铁多吡啶、五齿铁配合物)CO2均相光催化还原体系,总结了体系的构成以及作用机
紫外(UV)探测技术几乎不受环境背景噪声影响,在生物分析、发射器校准、空间探测等方面得到了广泛应用,而紫外光电传感器是其核心。当今,紫外光电传感器多基于单原子硅、Ⅲ族氮化物和金属氧化物材料。硅和Ⅲ族氮化物成本高、制备工艺复杂,发展受到限制。宽带隙金属氧化物半导体材料,如ZnO、SnO2等二元氧化物和Zn Ga2O4、ZnSnO3等三元氧化物,对紫外光也具有良好的UV光敏性能;且其物化性质稳定、制备
近年来,紫外皮秒激光在微纳加工、物质检测、生物医学技术等领域的应用逐渐深入。目前,由于缺乏合适的直接产生紫外光的激光光源,基于非线性光学晶体的频率变换成为了输出超短紫外脉冲激光的有效方法。因此,对于紫外波段非线性频率变换过程的研究在科研和生产应用中均具有重要意义。本文对于皮秒紫外355 nm激光输出效率提升进行了理论研究,并在其基础上向波长更短的深紫外方向拓展,搭建了全固态深紫外高重复频率皮秒21
采用水热法制备CeO2纳米颗粒(W-CeO2)、CeO2纳米片(S-CeO2)、CeO2纳米棒(B-CeO2)及CeO2纳米八面体(O-CeO2),用浸渍法负载相同质量分数的铜形成CuO/CeO2催化剂。通过扫描电镜(SEM)、高分辨透射电子显微镜(TEM)、X射线衍射(XRD)、拉曼光谱(Raman)、自动吸附分析仪(BET)、H2程序升温还原(H2-TPR)、N2O滴定等表征技术对催化剂进行表
气敏传感器可以检测环境中的特定气体,在易燃、易爆、有毒、有害气体的检测中应用非常广泛。气敏材料对气敏传感器的性能有着至关重要的影响,在众多气敏传感器中,金属氧化物半导体气敏传感器因其气敏材料制备简单、绿色环保、气敏性能优异等优点受到国内外研究者的高度关注。ZnSnO3是一种具有钙钛矿结构的三元复合金属氧化物半导体,它兼具Zn O和Sn O2两种材料的特点,表现出优异的气敏性能。但与许多二元金属氧化
热障涂层(TBCs)是航空发动机涡轮叶片的核心技术之一。近年来,一种主要成分为CaO-MgO-Al2O3-SiO2(CMAS)的环境沉积物腐蚀成为热障涂层失效的重要原因,引起极大关注。本文研究了CMAS的自结晶行为,提出了一种MAX相的Ti2AlC作为热障涂层的CMAS防护层材料,研究了Ti2AlC与CMAS的高温反应行为及反应结晶产物特征,阐明了Ti2AlC促使CMAS反应结晶机理,明确了其阻熔
能源与环境问题日趋严峻,对内燃机节能减排提出了更多的要求,其中内燃机余热回收是实现节能减排的关键技术手段。以CO2混合物为工质的动力循环可以较好的适应内燃机余热特性且能在一定程度上改善系统的冷凝问题,具有很好的应用前景。目前关于混合工质动力循环系统的研究大多集中于部件设计及系统的稳态计算,缺乏对其动态特性及控制策略的研究。然而,由于内燃机工况的频繁波动,系统常常在变工况下运行,所以研究系统的动态特
蝎毒素是一类由20-90个氨基酸通过3或4对二硫键铰链而成的具有多种生物活性的小分子多肽。大多数蝎毒素的三维结构是由1个a螺旋和2-3条反向平行β折叠组成的稳定而致密的球状空间结构。它们可以选择性、特异性的与细胞膜上的离子通道结合,是研究离子通道的分子探针,具有重要的理论与应用研究的价值。 根据TsTXKβ和AaTXKβ的保守序列设计引物,运用PCR方法从本室已构建的东亚钳蝎(Buthus
随着全球经济的快速发展,能源短缺与环境污染成为当今世界共同关注的热点问题,开发和利用洁净能源成为当务之急.近年,以半导体为基础的光催化技术引起了国内外的广泛关注,其中包括光催化分解水制氢、光催化还原CO2、光催化固氮以及光催化降解污染物等.尤其太阳能驱动的光催化分解水和光催化CO2还原均可将太阳能转化为可储存和运输的化学能源.因此,设计高效稳定的光催化材料具有重要意义.中空结构材料由于具有比表面积