【摘 要】
:
无人驾驶扫地车可用于公园、社区和工厂等不同的场景,因此无人驾驶扫地车在工程应用上前景广阔。本文依托于某企业提供的铰接式无人驾驶扫地车实车平台,针对铰接式无人驾驶扫地车特定场景下路径规划、循线行驶、定速巡航、跟车行驶、自主换道、自主超车、路口通行、主动避障、红绿灯启停、自动启停与制动以及定点停车等功能,设计无人驾驶方案,构建软硬件平台架构,并对无人驾驶铰接式扫地车运动规划关键技术进行了轨迹规划和速度
论文部分内容阅读
无人驾驶扫地车可用于公园、社区和工厂等不同的场景,因此无人驾驶扫地车在工程应用上前景广阔。本文依托于某企业提供的铰接式无人驾驶扫地车实车平台,针对铰接式无人驾驶扫地车特定场景下路径规划、循线行驶、定速巡航、跟车行驶、自主换道、自主超车、路口通行、主动避障、红绿灯启停、自动启停与制动以及定点停车等功能,设计无人驾驶方案,构建软硬件平台架构,并对无人驾驶铰接式扫地车运动规划关键技术进行了轨迹规划和速度规划两部分研究和设计。本文的研究工作如下:(1)轨迹规划的研究,针对无人驾驶铰接式扫地车运动学方程较复杂,约束条件较多的问题,本文结合铰接式扫地车运动学模型,通过曲率代价、铰接角变化速率代价结合五阶贝塞尔曲线生成了大量曲率连续的并满足铰接角约束的候选轨迹。同时考虑到扫地车贴边行驶的工作情况,为了避免避障轨迹重复轨迹规划,影响扫地车扫地的效率,在论文中建立了扫地车的防碰撞约束,并考虑了前车的行驶状态,把前车轨迹作为约束代入到扫地车的轨迹代价函数中,以应对环境的动态变化。通过代价函数选取代价最小的一条轨迹,获取最优轨迹作为运动规划的输出。(2)速度规划的研究,针对无人驾驶铰接式扫地车易发生“超调”的问题,本文分析无人驾驶铰接式扫地车的速度约束,找到车速与铰接角速度的关系,保证扫地车正常工作过程中的稳定转向。然后设计基于目标距离速度规划,保证扫地车在整个参考轨迹上的精确行为。同时针对动态障碍物,分析了扫地车的不用速度规划工况,保证扫地车可以根据障碍物的距离以及当前车速,实时安全的完成加速和减速过程。(3)最后,基于某扫地车实车平台,对铰接式无人驾驶扫地车在多种工况下的运动规划方法进行了验证。实验结果表明,该算法生成的运动轨迹具有可靠性、实时性,可以保证扫地车快速的避障和稳定的加减速,提高扫地车清扫作业的效率。
其他文献
基于磁流变(Magnetorheological,MR)技术的汽车电控悬架能够实现行驶平顺性和操纵稳定性的同时提升。本文将从MR技术的精确控制出发,着重研究磁流变电控悬架控制对车辆侧倾和俯仰的影响。为实现MR阻尼器的精确控制,提出并深入研究了一种动态电阻-电容(Resistor-capacitor,RC)算子磁滞模型。所提出的动态RC算子将RC算子和输入的变化率联系在一起,增加了RC算子磁滞模型的
超级电容器具有功率密度高、充放电速率快、循环稳定性好等优点。然而其能量密度较低的缺点严重制约了其大规模商业化应用。电极材料是影响超级电容器电化学性能的关键,因此开发具有高比电容且循环稳定性高的电极材料尤为重要。基于法拉第反应的赝电容材料具有较高的比容量。其中,镍钴基过渡金属碱式碳酸盐由于其独特的晶体结构,电解质离子易于嵌入和扩散到材料内部进行快速的氧化还原反应,因此具有出色的理论电容,在能量转换和
燃料电池汽车是新能源汽车中的重要类型,利用燃料电池系统和辅助能源共同输出能量以驱动车辆前进,具备能量转化率高等优点。燃料电池汽车混合动力系统的功率分配是整车控制的重要环节,良好的功率分配控制策略对整车的燃油经济性和整车寿命将产生非常重要的影响。本文以燃料电池汽车为研究对象,搭建混合动力系统模型,基于特性分析采用优化算法制定有效的功率分配控制策略。具体的研究内容如下:(1)本文燃料电池车型采用的架构
在传统汽车结构耐撞性优化设计研究中常运用数值优化方法进行确定性优化设计。然而确定性优化结果往往接近约束边界,当设计变量受到不确定因素影响时导致确定性优化结果不可靠。因此,在兼顾耐撞性与轻量化的整车设计中,可靠性设计显得尤为重要。前人的研究表明,Chebyshev区间方法在提升设计解可靠性方面发挥了很大的作用。因此,将Chebyshev区间方法与传统整车结构耐撞性优化方法相结合提升设计解可靠性具有一
为改善环境污染问题以及化解能源危机,全球各国都在大力发展新能源汽车,其中电动汽车由于技术相对成熟,近年来率先在市场上得到普及。而随着电动汽车的普及,相应的配套基础设施也得到了迅猛发展。结合智能电网的发展,V2G技术应运而生,因此研究能够实现能量双向流动的电动汽车充放电系统具有深远的意义和广泛的应用前景。本文以直流快充的AC/DC变换器系统作为研究对象,旨在实现V2G功能的前提下提高系统的充放电效率
随着社会进步和经济发展,汽车保有量不断增长,随之而来的是交通事故频繁发生。由驾驶员疲劳驾驶而导致车道偏离是发生交通事故的常见原因,以车道保持为代表的横向辅助系统是避免车道偏离的有效途径。为解决以上问题,本文对基于疲劳检测的人机协同车道保持进行研究,提出一种基于面部特征识别的驾驶员疲劳检测方法并与人机协同车道保持控制相结合,主要完成以下工作:首先,本文提出了一种基于面部特征点识别的驾驶员疲劳检测方法
近年来,资源短缺与环境污染等问题愈发突出,在可持续发展的大背景下,新能源汽车的发展正在逐步成为汽车行业的一个趋势。锂离子电池作为新能源汽车的重要动力来源之一,在新能源汽车蓬勃发展的大环境下,其各项特性地研究也越来越受到重视。动力锂离子电池的荷电状态(State of Charge,SOC)是用来描述电池所剩电量多少的物理量,它与汽车的续航里程直接挂钩。此外SOC对于动力锂离子电池的充电方式的选择、
当前人类社会面对的严重的环境污染和能源紧缺问题,寻找清洁可持续的能源是当前的研究热点。而交通运输业则是能源变革的关键行业之一,其中氢燃料电池混合动力汽车由于其清洁、可持续、续航长的特点,受到了广泛的关注。质子交换膜燃料电池是应用在汽车上最广泛的一种,其具有比功率高、启动快、工作温度低的特点。在燃料电池混合动力汽车中增加辅助能源,一方面可以在车辆大功率工况时提供额外的能量满足车辆行驶,另一方面可以对
近年来,锂离子电池因比能量和比功率大、循环使用寿命长、安全性高等优点,被广泛作为电动汽车动力源。而准确地掌握动力电池荷电状态(state-of-charge,SOC)有助于预测续驶里程、可有效控制电池过度充放电进而延缓电池老化。然而,目前主流算法大多只关注于改善个别SOC估计指标,忽略对提高其综合估计性能的研究。因此,如何能够在兼顾多项估计指标的基础上实现SOC实时高精度预测仍然是当今学术界重要研
横置板簧悬架能有效的减轻汽车簧载质量,为电动汽车提供更多的后排空间,是目前车辆悬架领域的研究热点。但是,横置板簧具有整体性,汽车从生产出厂后刚度就无法改变。随着簧载质量的变化,单一的刚度无法满足汽车悬架的平顺性和操稳性性能。为能够根据簧载质量的变化,相应改变横置板簧刚度,本文提出并实现了一种横置板簧变刚度的调节机构。此机构通过改变副车架力臂的长短来实现变刚度的目的。因为悬架不仅要考虑刚度,阻尼也要