论文部分内容阅读
钢桥面铺装结构层在通车后2-3年内即病害频发的案例在国内外屡见不鲜,频繁的铣刨维修不但严重干扰了交通,也会对钢桥的主体结构造成严重损伤。造成钢桥面铺装结构层病害频发的原因,除了与钢桥严苛的服役环境有关,还有可能是目前针对桥面铺装的设计大都以控制铺装结构与材料的极限强度为主,对疲劳损伤效应的影响考虑甚少,而桥面铺装中的车辙、层间脱空、裂缝等常见的病害恰恰大多是由疲劳损伤造成的。因此,针对以上桥面铺装设计中的缺陷,本论文拟以武汉白沙洲大桥为研究对象,分析桥面铺装结构在车载、温度综合作用下的力学行为及造成的多种疲劳损伤效应,揭示桥面铺装结构早期病害频发的原因,并提出相应的优化措施。首先,本论文以病害频发的武汉白沙洲大桥为工程背景,利用有限元软件Abaqus建立三维立体模型,对比分析在极限破坏以及疲劳破坏两种加载方式下,铺装结构的最不利荷载位置,并分析荷载、温度以及铺装层厚度的变化对铺装结构力学响应的影响。结果表明,荷载以及温度的增加均会对铺装结构的受力产生不利影响,而铺装层厚度的增加会产生有利影响;铺装层底最大拉应力、拉应变均出现在横隔板附近,而防水粘结层最大剪应力出现在纵向加劲肋边附近。25℃下的防水粘结层剪应力最大,说明如果以极限剪应力为设计标准,规范采用25℃时的抗剪强度作为指标是合理的。其次,对铺装结构中的环氧树脂防水粘结层及SMA铺装材料分别进行了疲劳试验研究,采用自主研发的直剪疲劳装置对防水粘结层进行疲劳试验,研究防水粘结层剪切疲劳寿命在不同温度、应力及涂覆量下的变化规律,采用四点弯曲疲劳试验分析了温度和应变对SMA铺装材料弯曲疲劳寿命的影响,并建立相应的疲劳寿命预估模型。结果表明,应力、温度、涂覆量均对防水粘结层的剪切疲劳寿命具有显著性影响,其中应力影响最大;以25℃为分界,随应力增加,防水粘结层剪切疲劳寿命的衰减速率呈现显著的增长。防水粘结层与SMA铺装层之间的粘结性能是影响层间剪切疲劳寿命的关键。温度和应变均会对SMA铺装层材料的弯曲疲劳寿命产生显著性影响,且温度的影响较大。最后,针对武汉白沙洲大桥出现的车辙、裂缝以及层间脱空三种主要病害,基于力学分析结果以及建立的防水粘结层和SMA铺装层的疲劳寿命预估模型,分析了铺装结构在车载、温度综合作用下疲劳损伤效应,基于Miner疲劳损伤理论,计算了白沙洲大桥铺装结构在现有交通量和环境条件下的使用寿命,揭示铺装结构早期病害频发的原因,并提出相应的优化措施。结果表明,分别以车辙变形量、铺装层底弯拉疲劳破坏及防水粘结层间剪切疲劳破坏计算得到的铺装结构疲劳寿命分别为6年10个月、10年8个月和2年9个月,均达不到钢桥面铺装结构15年的最低使用年限要求,说明在钢桥面铺装结构设计中应更关注多种疲劳损伤引起的破坏,不能仅考虑铺装结构的极限破坏,而疲劳寿命最短的层间剪切疲劳破坏更应被重点考虑。增加铺装层厚度的同时限制交通量是目前较为有效的延长白沙洲大桥铺装结构寿命的措施,可使得使用寿命由原来的2年9个月增至6年。