【摘 要】
:
近年来,随着对化学和生物样品分析的需求逐渐增大,各种分析技术都获得了广泛的发展,其中质谱是分析化学中应用最广泛的化学技术之一。面对质谱数据识别技术的需求,快速正确识别样品的检索研究也取得了不断的发展,各种相似度量和概率的方法相继出现,识别精度也逐渐提升。目前,大多商业软件中采用这些相似度量方法,但仍然存在很多难以区分的质谱分子。针对此种问题,本文就质谱数据识别技术展开研究。传统的质谱识别技术都是基
论文部分内容阅读
近年来,随着对化学和生物样品分析的需求逐渐增大,各种分析技术都获得了广泛的发展,其中质谱是分析化学中应用最广泛的化学技术之一。面对质谱数据识别技术的需求,快速正确识别样品的检索研究也取得了不断的发展,各种相似度量和概率的方法相继出现,识别精度也逐渐提升。目前,大多商业软件中采用这些相似度量方法,但仍然存在很多难以区分的质谱分子。针对此种问题,本文就质谱数据识别技术展开研究。传统的质谱识别技术都是基于一些相似度量或概率方法实现,但质谱库中存在同分异构体,从而导致高的假阳性识别。随着深度学习在各个领域的快速发展,也广泛应用于化学信息领域。本文提出了基于深度分类模型辅助化学质谱数据检索,并开发出直接用于化学质谱数据检索的成对标签算法。基于深度学习的化学质谱数据检索相对于传统的质谱识别方法在精度上有很大的提升,并在NIST05数据集上实验进行了相关验证。(1)针对质谱库中存在众多的同分异构体导致传统相似度量方法难以正确识别问题,本文使用了一种粗筛细分的方法。首先第一部分粗筛:通过加权点积的方法增加相似质谱之间的相似性,再利用随机投影方法减少计算成本,最后通过加权余弦相似度计算出参考库中排名前十的相似质谱;第二部分细分:在排名前十的质谱中选取前N个质谱分子与查询库中对应查询质谱两两配对,再通过设计的深度二分类网络来训练模型,最后将训练好的二分类模型应用到排名前十的质谱中进行细分并重新排序。(2)针对第一种从侧面辅助化学质谱数据检索的方法,同样存在一些问题:过程复杂,花费巨大,收敛缓慢。这里使用了一种直接用于化学质谱数据检索的成对标签算法,用于解决第一种方法存在的问题。首先通过加权点积的方法增加化学质谱之间的相似性。为了减少计算负担,采用批次构造,构造出成对的数据集以用于模型训练以提取质谱特征。所使用的目标函数可以增大相同化学质谱分子特征之间的相似性,同时减小不同化学质谱分子特征之间的相似性。本论文在数据集NIST05上进行了实验,实验结果显示,基于深度学习的化学质谱识别可以更好的适用于质谱库检索,并且验证了该方法的有效性。
其他文献
石墨相氮化碳(g-C3N4)作为光催化剂因诸多优异的潜质而得到了广泛的关注,例如可再生无环境污染,较高的热力学和化学稳定性,具有可见光响应等,但是电子-空穴容易复合,可见光吸收能力不足、比表面积小等依旧严重限制了它的发展。迄今为止,研究者已开发出众多策略改善g-C3N4的性能,其中缺陷被证明可以调节电子结构和增强光吸收,有效改善g-C3N4光催化制氢性能。本文以不同的缺陷引入方式制备了C缺陷诱导π
细菌感染一直威胁着人类的健康,根据世卫组织报道,近年来,传染病的流行导致死亡的人数,也一直牢牢占据着全球第二大致死病因,对于经济发展也造成了巨大的影响。而抗生素被发现后,由于优异的抗菌性能,在医学治疗过程中被大量使用,但是由于抗生素的滥用使得部分细菌出现了耐药性能,使细菌感染更加难以治疗,因此抗菌剂的选用也尤为重要。对于抗菌剂的负载,生物相容性好的水凝胶无疑是最佳选择之一。水凝胶是一种三维的网络结
碳钢作为最重要的结构材料之一,以其优异的性能应用于几乎整个工业领域。然而,碳钢的严重腐蚀往往导致众多的安全隐患和巨大的经济损失,最近的一项研究估计,中国每年腐蚀的总成本超过三千一百亿美元,占国内生产总值的3.4%。高分子材料被广泛用作金属表面与腐蚀环境之间的物理屏障,绝缘和保护金属结构不受腐蚀。环氧树脂在聚合物中因其特殊的性能而被广泛应用,例如,机械性能较高,耐腐蚀性好。现在,人们环保意识的提高,
稀土元素是不可或缺的战略元素,已广泛应用于高性能技术如电动汽车电池、照明显示器、风力涡轮机磁铁和电路以及国防系统等。稀土元素因相似的化学性质常在自然界中共存,使其分离浓缩和分析检测都面临着挑战。稀土离子的荧光光度检测法具有操作简单、响应快、成本低、较高选择性和灵敏度等特点,其中碳量子点是是该法颇具潜力的纳米材料助剂。本论文围绕特异性识别稀土离子的掺杂型碳量子点展开研究工作,通过使用含有不同杂原子的
金属纳米团簇填补了离散原子和等离子体纳米颗粒之间的空缺,提供了在原子水平上研究量子效应以及精确的原子结构与性能之间的关系的独一无二的平台。相对于单金属团簇,某些双金属团簇可以使其物理化学性质得到改善,例如金属协同效应,因此,合金化是一种使其在应用中更有效率的简单有效的方法。这篇文章中,我们列举了现在的原子精确的合金纳米团簇的研究进展以及研究生期间的研究成果,并对合金团簇的形成原理进行了简单的总结,
原子结构精确的金属纳米团簇和具有明确结构的载体构成的模型催化剂,在基础催化的研究中具有广阔的前景,比如原子结构和表面配体对催化效率的影响、原子的掺杂对活性的影响以及活性与原子结构之间的构效关系等。金属纳米团簇又分为单一金属(例如金团簇,铜团簇,钯团簇和银团簇等)和合金纳米团簇(金银团簇,金铜团簇和银铜团簇等)。通过目前的研究,不同类别的纳米团簇其催化性能也有所差别,往往合金纳米团簇由于其独特的合金
碳点(Carbon dots,简称CDs)是尺寸一般小于10 nm且具有荧光性质的碳纳米颗粒。因其可调节的荧光发射、良好的光稳定性和生物相容性,在生物医学和发光器件等领域应用前景广阔。但是,由于聚集诱导猝灭效应,CDs在聚集状态或固态下,其荧光常被猝灭,而且在长波长(红光甚至近红外)区域的发光效率比较低,这些问题限制了CDs在固态发光器件和生物医学领域的进一步实际应用。杂原子掺杂是调节和改善CDs
苯并噻二唑是一种杂环化合物,具有强的电子吸收和光吸收特性、以及良好光化学稳定性,其衍生物在生物传感和成像、太阳能电池、有机发光二极管等领域具有广泛应用前景。该类衍生物在结构调节、性能优化、应用拓展等方面的关联性还有待进一步深入研究。本论文以苯并噻二唑为母体,连接不同取代基调节分子结构,设计并合成苯并噻二唑衍生物,研究其光学性质,探索其在活体生物荧光成像、识别检测生物活性小分子及实时监测方面的应用。
氨基酸和各种短肽作为生物体蛋白质的基本组成单元,对其结构、性质以及光谱的研究有助于了解各种生物的蛋白质功能和各种生物学现象。随着计算模拟方法和计算机技术的发展,理论计算在对氨基酸和短肽的研究起到越来越重要的作用,对这些生物小分子的理论计算可以用来解释一些实验上的研究成果,并且可以对一些未探索的实验领域进行推测和指导。本文通过对一系列短肽分子几何结构和电子结构的系统研究,深入考察了分子内氢键相互作用
太阳辐射对地球生命有着广泛的影响,为地球大气运动提供能量。在现代工业化进程中,人类活动导致大气系统发生了显著变化,如平流层臭氧量减少、臭氧空洞出现、对流层大气复合污染等现象,全球地表UV-B辐照度也随之发生相应的变化,给人类及生态环境带来了显著的影响,如皮肤癌变、作物产量减少等。因此,监测地表UV-B辐照度具有重要的意义。监测地表UV-B辐照度主要有两种方式:地基监测和卫星监测。地基平台地表UV-