基于规则控制的区间参数优化方法及应用

来源 :华北理工大学 | 被引量 : 0次 | 上传用户:haizhi19841029
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
区间概念格的参数优化问题不同于传统的参数优化问题。来源于区间概念格的区间参数,其取值直接影响着格结构的规模和稳定性,并对后续基于此挖掘出的关联规则,分类规则的数目和精度以及决策准则的效率产生着影响。目前人为主观地选取区间参数值有很大的不确定性和弊端,鉴于此设计区间参数优化模型。  首先,数据量暴涨的现状会导致格结构中概念结点冗余,因此要进行概念格的压缩约简。结合形式背景下二元关系对与对象的近邻的定义提出了区间概念格的压缩算子,构建了基于压缩理论的区间参数优化模型,通过调节压缩度获取格结点冗余最少时的区间参数,并给出实例验证模型的有效性。  其次,考虑到区间参数的改变只会改变部分概念结点和格结构,因此在之前的重建算法上提出了概念格的更新算法。结合基于区间概念格的关联规则提取算法,提出了基于关联规则的区间参数优化模型。实例分析表明了当区间参数取值接近[0.5,1]时,由此挖掘出的关联规则的数目适中且精度较高。  再次,鉴于概念格本身对数据分类的特点,设计了基于区间概念格的分类规则提取算法。发现当区间参数改变时,概念的分类规则的数目和精度都会随之变化,由此提出基于分类规则的区间参数优化模型,通过控制规则的数目和精度,达到调节区间参数的目的。实例验证了模型的有效性。  最后,站在三支决策空间的角度上,给出了基于三支决策空间的区间参数优化模型的应用,通过图书推荐案例讨论了区间参数的改变对决策准则的影响,进一步验证了区间参数的有效取值,并达成近似一致。
其他文献
该文详细研究了具有限时滞Lienard方程的周期扰动Hopf分支,即在该系统经历Hopf分支时,研究小周期扰动对系统的影响,特别是讨论了扰动频率与Hopf分支周期解的固有频率在共振、
该文引入了半环的星元素和星理想等概念,讨论了半环的星结构.该文分四个部分.第一部分引入了星元素、星半环等概念;第二部分,引入了星理想的概念并讨论了它的性质;第三部分,
变分不等式组是最优化领域中一个较新的研究课题.该文对这一课题展开后继研究,在[1]给出的解的存在性定理基础上,研究这类变分不等式组的解集L(SVI)的若干性质.首先,作者在文
开始于1952年的Markowitz证券组合理论是现代金融经济学的起点.在其投资组合理论中,Markowitz把证券收益率的方差作为证券收益风险的度量,投资者在选择证券组合时,考虑证券组
该文讨论了带约束的离散点集的NURBS曲线、曲面的逼近问题,主要工作如下:1基于模拟退火算法和最小二乘法,给出了带插值条件的离散点集的NURBS曲线逼近的算法.算法原理简单,易
随着社会经济的发展,经济增长与资源环境的矛盾日益凸显,为了协调经济与资源环境的关系,开展生态效率的相关研究具有重大意义。首先利用非线性回归与信息熵针对核主成分分析
我们在g-期望的基础上研究加权g-期望.设λ∈[0,1].记  称ελ[ξ]g为ξ的加权g-期望.我们研究加权g-期望的直接动因是赫尔维茨的关于最乐观与最悲观结果的方法(Hurwitz op
该文是用一种新的方法,讨论了单种群生物资源的捕获优化问题,分别以单位时间最大可持续捕获量和单位时间最大净利润为管理目标,得到一类单种群捕获模型的最优捕获策略,所得结
由于以误时工件数作为一个指标的单机主次指标排序问题中有三个问题的复杂性至今仍是未解的.该文就着力研究以误时工作数ΣU和最大误时T两个指标分别作为主次指标的排序问题