论文部分内容阅读
算子理论产生于二十世纪初,是泛函分析理论重要的组成部分,不仅深入到矩阵理论、运筹学与控制理论、统计学等众多理论研究学科,而且在量子力学、微分动力系统等许多应用学科领域中都有着广泛的实际应用,是一个十分广阔的研究领域。作为算子理论中重要的一分支,算子不等式的研究就显得尤为重要,尤其是一些经典算子不等式的研究。近年来,越来越多新型的算子不等式版本展示出来,在方法与技巧上也体现出多元化,以及这些算子不等式在交叉应用学科中的深入或拓展应用。因此对算子不等式做更深入的研究是非常必要的。本文借助于连续函数的凹凸性,矩阵的谱分解,Hermite范数的酉不变性以及函数演算等工具,将几类经典算子不等式加以推广并给出一系列重要的算子不等式。主要研究工作有:1.推广算术、几何平均算子不等式的适用范围,并得到相应的一系列准算术–几何平均算子不等关系式。2.基于算子函数的单调性原理及细化的标量形式的Young及其逆不等式,给出相应Young及其逆的算子版本的不等式。3.运用Hilbert-Schmidt范数的酉不变性及改进的标量形式的Young及其逆不等式,建立新的Young及其逆的矩阵版本的不等式。4.引入Kantorovich常数,得到多参数具有Kantorovich常数的Young及其逆的标量形式以及相应的算子形式的不等式,其中也包括一些Heinz型的均值算子不等式。5.借助连续凸函数的性质,给出酉不变范数下Heinz均值算子与Heron均值算子之间的不等关系式。6.给出直角坐标系下多参数连续s-凸函数的一个相关性质,并得到相应的多参数Hermite-Hadamard型积分算子不等式。7.利用统计学中的绝对中心距推广含参形式的Samuelson型算子不等式,并应用研究复数域矩阵数值特征值以及复系数多项式特征根的估计与定位问题,进一步得到相关的估计区域。