石墨烯衬底上制备的β相Sn的STM研究

来源 :上海交通大学 | 被引量 : 0次 | 上传用户:B08050402
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
低维材料有着不同于常规块体材料的新奇性质。现代半导体芯片已经可以达到10 nm以下工艺,以量子通信、量子计算等为标志的第四次工业革命已经初露萌芽,人类社会即将进入“量子时代”,理解低维物理原理对于量子器件制作有着重要意义。当器件的物理尺寸与电子的费米波长相近时,电子的运动在某些方向上会受到限制,电子的能级由准连续能级变为离散能级,就会表现出量子尺寸效应。量子尺寸效应会对材料的诸如超导性、热稳定性、局域功函数、表面化学反应、生长方式等产生影响。量子阱态是量子尺寸效应的一个典型例子。在一个二维材料体系中,譬如薄膜材料,电子在二维平面内的运动是自由的,而在垂直于平面方向受到限制,就会形成量子化的电子态,也就是量子阱态。通过调节薄膜材料的厚度,也就是限制势阱的宽度,我们可以实现对材料物理和化学性质的调控。在本篇论文中,我们利用扫描隧道显微镜详细研究了在graphene薄膜上生长的β-Sn岛的表面结构与电子态性质。本文的研究成果包含以下:(1)我们通过在Si C高温烧结而成的graphene表面利用分子束外延技术生长了15-19个层厚的β相Sn岛,并利用扫描隧道显微镜强大的实空间分辨能力详细研究了β-Sn岛表面的形貌信息。我们发现奇数层Sn岛上存在一种奇特的条纹状重构,而偶数层Sn岛则保持了平整的表面。对两种表面的原子结构的分析结果表明,有条纹状重构的表面的晶格发生了畸变,而没有条纹状重构的表面晶格未发生畸变。(2)我们利用扫描隧道显微镜强大的作谱能力详细研究了β-Sn岛表面的电子态信息,发现所有Sn岛的d I/d V谱都呈现了典型的量子阱态的性质,即形成了一系列等间隔的电导峰。这种等距离的能量间隔即为量子阱态的能量间隔,且能量间隔随着层厚的增加而递减。(3)我们发现Sn岛表面的量子阱态会受到表面条纹状重构的影响,具体表现在量子阱态的最低占据态峰位会在条纹状重构位置出现一个新的劈裂峰。该现象可以用Bohr-Sommerfeld量子化条件来解释。表面条纹状重构影响了表面局域化学势,造成Sn-Vacuum界面相移的改变,进而改变了条纹状重构处量子阱态的形成条件。(4)我们实验上还发现这种表面条纹状重构是一种亚稳态的结构,可以通过扫描隧道显微镜的针尖施加电压脉冲的方式来改变条纹状结构的分布。这为局域地调控量子阱态提供了一种可能的方法。
其他文献
钛合金具备高比强度和优良的耐腐蚀性而广泛应用于航空航天、兵器、民航和工业等领域,而钛基复合材料(TMCs)兼具基体材料的高比强度、良好的高温抗蠕变性能以及陶瓷增强相的高硬度、高比刚度、高比弹性模量和耐磨性,发展潜力巨大。将Ti6Al4V(TC4)合金和钛基复合材料制备成复合构件不但能够节省成本提高效率,而且可以充分发挥各合金的优异效能。因此,本文通过扩散连接技术将TC4和TMC结合起来,主要分析了
由于现代工业产业的飞速发展带来了能源消耗量巨大、环境污染相当严重等问题,使得开发和推广可再生能源刻不容缓。超级电容器凭借其极高的功率密度、能够进行快速充放电等优点在能源存储方面备受关注。基于材料结构多功能化的理念,通过结构和功能的综合集成化,构造具有结构-储能一体化功能的材料/结构,为航天飞船、汽车等运载工具,以及装备的轻量化、小型化指明了新的路径。本文从结构-功能一体化复合材料的思想出发,设计、
为了验证航空发动机在低温环境温度下的起动性能,基于试验舱模拟自然环境进行了某型涡扇发动机低温起动试验,介绍了试验设备及试验准备情况,选取环境条件为-40℃的降温历程曲线作为研究对象,该条件下的冷浸区别于高空台风车冷浸,能够使发动机内、外部关键部位均达到目标温度。试验结果表明:舱内冷浸3 h后发动机外部附件和内部转动部件已"冷透"。因低温环境下主燃油泵调节器内部零组件工作特性变化而导致的起动过程供油
动力定位系统由于具有定位方便快速,机动性强,便于操作,不受水深影响等优点,现已经被大量运用在了海洋工程系统如海洋钻井平台中。本文试以中国首座拥有8个全回转推进器的半潜式钻井平台——“海洋石油981”为对象,研究推力分配系统如何提高动力定位系统的定位能力,以及如何降低推进器功率消耗;以遗传算法为研究基础,分别通过与模拟退火算法、非线性规划算法相结合,提出运用混合智能推力分配优化算法来提高推力分配系统
创新点关节软骨损伤是一般人群和运动员最常见的关节损伤。有充分的证据表明,严重的关节损伤如骨软骨缺损,可能会导致人们在生命后期发生骨关节炎(OA)。软骨因其无血管、淋巴管以及神经分布,损伤后很难自行修复,进展性OA患者的软骨自我修复能力更是十分有限。目前,治疗软骨损伤的策略主要包括自体软骨细胞移植、微骨折技术和干细胞注射等。
期刊
二十一世纪以来,随着全球能源需求的急速增长,气候变化的日益加剧,当前世界各国都面临着能源转型的机遇和挑战。将电解水制氢技术用于消纳可再生能源的弃电量不仅促进能源结构变革,而且能缓解传统能源消耗带来的环境污染问题。本文首先针对质子交换膜(PEM)电解水技术和碱性溶液电解水(AEL)技术制氢进行了理论研究,后又通过生命周期评价方法(LCA)搭建了由可再生能源弃电制氢到氢能使用的技术路线。该方法先后通过
在高能粒子辐照下,金属基结构材料内部会出现不同的缺陷,这些辐照诱导缺陷的演变和聚集会降低结构材料的稳定性,造成材料力学、物理等综合性能的下降。研究表明,材料内部的界面可以俘获辐照缺陷,促进缺陷的相互复合,有效降低辐照损伤。基于这种界面设计的思想,纳米碳材料由于自身优异的结构和功能特性,与金属复合后,于碳/金属界面处可能形成有利于疏导辐照缺陷的高密度纳米通道,因此作为未来先进抗辐照材料拥有巨大的潜力
断裂韧性是在役设备和辐照材料剩余寿命预测以及安全评估的重要指标之一。在材料取样条件有限的情况下,断裂韧性无法通过常规样品力学试验测得,需要采用小样品外推获取。小样品分为两类:常规小型试样与小冲杆试样。本文采用粘聚力模型对这两类样品进行断裂过程的有限元模拟分析,基于常规小型试样的实验结果,采用反向有限元法获取材料的断裂韧性参数;对小冲杆样品进行优化设计,验证了反向有限元法对小冲杆断裂分析的适用性。对
BaTi2O5玻璃是无网格形成体氧化物玻璃体系中重要的一员,其独特的结构和性能特征一直吸引着大家对其进行持续深入的研究:从玻璃形成理论和玻璃结构研究角度出发,BaTi2O5玻璃是一个很好的理论研究范本;从功能材料开发的角度出发,BaTi2O5玻璃具有优良的光学性能,其退火单晶具有可媲美Pb Ti O3的优良铁电性,是极具潜力的下一代复合功能材料。但BaTi2O5的玻璃形成能力较差,常规熔炼技术无法
具有特定尺寸分布和取向的反浸润纳米颗粒阵列具有独特的光、电、磁及催化性能,在等离子体技术、传感器和一维纳米结构合成等方面具有广阔的应用前景。目前的研究主要集中在处理参数方面,但反浸润基底也是影响颗粒分布和取向的重要因素。本论文基于课题组前期研究成果,即热处理过程中氧化物基底生长现象,在不引入额外组分的情况下,研究基底对反浸润颗粒的尺寸分布和取向的影响。本研究成果可为调控反浸润纳米颗粒提供新思路。主