【摘 要】
:
近年来,随着人工智能技术的发展,深度学习作为一种重要技术应用于自然语言处理和机器视觉等前沿领域。同时,动态演化网络广泛存在于现实生活中,包括社交网络、科研引用网络以及交通网络,动态网络的研究也成为了学术界的研究热点之一。目前学术界大量地将深度学习技术应用于网络表示学习的研究,通过对网络中的节点进行表示学习取得节点向量,从而方便对非结构化的网络图数据进行机器学习任务,包括节点分类、链接预测和可视化等
论文部分内容阅读
近年来,随着人工智能技术的发展,深度学习作为一种重要技术应用于自然语言处理和机器视觉等前沿领域。同时,动态演化网络广泛存在于现实生活中,包括社交网络、科研引用网络以及交通网络,动态网络的研究也成为了学术界的研究热点之一。目前学术界大量地将深度学习技术应用于网络表示学习的研究,通过对网络中的节点进行表示学习取得节点向量,从而方便对非结构化的网络图数据进行机器学习任务,包括节点分类、链接预测和可视化等应用。通过对现有的网络表示学习算法的分析与对比,发现存在以下不足之处:1、大多数网络表示学习方法只针对静态网络进行表示学习,忽视了网络结构会随着时间动态演化的性质;2、现有网络表示学习方法没有考虑网络边属性或权重对表示学习的贡献;3、当网络不断扩展时,大量新增节点加入动态网络,现有表示学习算法的性能将受到影响。为了解决上述问题,本文围绕基于表示学习的动态演化网络算法进行研究,具体内容如下:1、提出基于概率游走的网络表示学习算法Prob Walk,其目的在于网络边权重信息融入动态网络表示学习。首先将动态演化网络转化为赋权图,通过赋权图中边上的权重值计算随机游走时游走路径选择方向的概率,构建出赋权图游走路径库进行网络表示学习。实验表明:在四种网络数据集上机器学习任务评估结果证明了Prob Walk算法的有效性。2、提出一种新的网络表示学习方法,其目的在于解决高效地计算出动态演化网络中大量新增节点的向量表示。首先将动态演化网络表示为一串网络结构的快照序列,使用静态网络表示学习方法获取原始网络的节点向量,在超球面随机选择一个变化向量,为动态演化过程中的新增节点更新向量表示,同时对表示学习算法的负采样环节进行优化,提高算法在动态网络变化中的性能。实验结果表明:在动态网络数据集上该算法相较于静态方法具有有效的性能提升。3、设计并实现了一个动态演化网络的应用系统,该系统将上述算法获得的网络节点向量表示用于机器学习任务,实现了节点分类、链接预测以及网络可视化等功能。该系统基于Web架构提供对动态演化网络研究的应用服务,满足用户通过浏览器上传动态网络数据集进行节点分类、链接预测和可视化等应用的需求。
其他文献
21世纪,随着智能手机、GPU硬件的更新迭代,计算机图形学已广泛地运用在生活和工程中,手机游戏凭借渲染算法获得良好的视觉效果,高级渲染效果甚至可以很好的模拟真人的外观。“智能虚拟人”是三维渲染与人工智能结合的产物,表现结合智能算法,拥有一定自主学习能力于可交互性的虚拟角色,虚拟人的研究可以为探究人类自身的智能提供了参考,同时虚拟人具有一定应用值,可用于智能服务,虚拟主播等。随着三维相关的人工智能技
近些年车联网技术伴随智能汽车的风口进入人们的视野,在5G通信、云计算、人工智能等技术的加持下,车联网技术在几次的产业升级中不断发展,智能汽车也上升到国家战略层面。在研究车联网发展过程中,发现车辆智能终端的云端监控平台和终端安全也是重要的课题,车辆的终端安全关系到道路车辆和设施安全、行人和驾驶员的人身安全,近些年也频繁出现车辆遭遇劫持等问题。论文主要面向车辆终端的软件层面的安全监控,配合云端的安全分
在大数据时代,互联网上产生了大量的不同题材的内容,导致用户不能快速地获取感兴趣的内容,严重影响了用户的使用体验。为了解决这个问题,推荐系统取得了成功的研究与应用。由于用户对项目的评分能反映用户对项目的喜欢程度,所以大量的推荐算法从用户对项目的历史评分数据中提取有价值的信息,据此提供推荐内容。现有推荐算法通常将用户的历史评分数据表示为高维稀疏矩阵,并从高维稀疏矩阵的评分数据提取数值特征,然而这些算法
目标检测作为人工智能学科中与生活最为贴近的研究热点之一,在自动驾驶、人脸检测、智能监控、医疗及工业检测等场景都有着广泛的应用。随着深度学习的发展,目标检测任务在准确率越来越高的同时,神经网络模型也越来越复杂。本文通过对目标检测网络以及神经网络压缩算法的研究,以端到端目标检测网络为切入点,着手于知识蒸馏、模型剪枝及参数量化三个方向对目标检测网络的压缩问题进行了研究。希望给目标检测网络的压缩问题带来新
随着机动车辆在全世界的逐渐普及,人们在便利生活的同时也伴随着交通安全事故。根据世界卫生组织的统计结果表明,全球每年死于交通安全事故的人数超过一百万人,其中接近五分之一的事故是由驾驶员分心行为所引起。驾驶员安全行为检测是对驾驶员在驾驶机动车辆过程中出现的不安全类别行为进行检测预警,如使用手机、抽烟和喝水等不安全动作。在图像检测领域,传统机器学习对待检测图片进行人工特征提取和特征匹配,其次使用支持向量
人体跌倒干预目前多局限于跌倒检测,以便检测到后及时送医以避免造成更大损失,但是并不能避免跌倒发生。人体跌倒碰撞前行为检测旨在人体发生跌倒碰撞前检测跌倒行为的发生。本文开展人体跌倒碰撞前行为检测研究,分别使用可穿戴惯性传感器和Kinect摄像头采集人体跌倒的惯性传感数据和视频序列数据,基于可穿戴传感器、Kinect摄像头和多视角融合方法进行人体跌倒碰撞前行为检测研究,适用于多环境下人体跌倒保护。论文
在深度学习技术快速发展的今天,现有的文本摘要技术也因此受益,处于蓬勃发展期。但是生成式文本摘要技术发展至今,依旧存在着句子冗余/错漏,内容覆盖主题不足,句子流畅度不高以及训练效率低下且难以部署的问题。本文根据对生成式文本摘要技术的研究,结合现有前沿技术,由此分析、设计并实现了胶囊-注意力指针模型,在该算法的基础之上,完成了相应的文本摘要高并发微服务复合架构的设计与实现。本文的结构以及具体工作如下:
准确识别计算机断层扫描图像上的恶性肺结节中是早期发现肺癌的关键。但这是一项繁琐和困难的任务,因为需要放射科医生手动标记结节位置。随着深度学习技术的引入,基于卷积神经网络的计算机辅助结节自动检测系统被开发用于肺癌早期的检测和分类筛查过程,显著地提高了放射科医生的诊断质量和效率。本论文重点研究了基于3D卷积神经网络的肺结节检测以及分类方法,研究工作主要分为以下两个部分:(1)基于双路径U-Net网络的
关系抽取是自然语言处理领域重要的研究方向,如何有效地从大量的文本中提取出关系事实,是近年来的研究热点。现阶段的主流方法通常使用深度学习技术进行关系抽取,这些方法大多集中在单个句子中的关系抽取。然而,大多数关系事实只能从一个段落或者一篇文档中抽取。由于段落和文档输入较长,现有的深度学习方法无法准确在文本中定位关系事实位置,并且不能对跨句子的关系进行推理。针对上述问题,本文结合图神经网络技术构建实体图
音乐自动标注的目的是识别一段音乐音频所涉及的各种社会标签,包括但不仅限于音乐的乐器、年代、情感和流派。目前,基于卷积神经网络的音乐自动标注算法已经成为解决该任务的主流方法之一。本文调研和分析现有基于卷积神经网络的音乐自动标注算法,发现卷积神经网络中的卷积和池化操作造成了的空间特征的损失、缺少基于数据增强的音乐自动标注算法的研究、缺少基于音乐自动标注算法的工程应用的问题。基于此,本文研究基于胶囊网络