非厄米晶格中零模性质的理论研究

来源 :山西大学 | 被引量 : 0次 | 上传用户:swgjtd44qx0
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
最近,非厄米系统在实验和理论领域都得到了很大的发展。研究发现,非厄米性可以极大的改变在厄米情况下确立的拓扑行为,例如,受增益和损耗分布影响的边界模。另一方面,拓扑绝缘体在开边界条件下表现出绝缘的体态和无间隙边界态,其特征在于拓扑不变量,例如Su-Schrieffer-Heeger(SSH)模型。SSH模型的手征对称性是导致非平庸拓扑结构产生的原因,可以通过缠绕数以及在开边界条件热力学极限下是否存在双重简并零模来证明。实际上,拓扑系统的实验实现通常是在有限系统中。但是由于有限系统中的边界耦合,零模将偏离精确零能。所以在本文中我们主要研究在有限大系统中拓扑零模的恢复。我们首先介绍P算符,T算符,PT组合算符及各算符的性质。接着介绍了传统的SSH模型,一维SSH模型是最初为研究聚乙炔引入的最简单的两带拓扑系统。但是在有限系统中,由于边界耦合,零模将偏离精确零能。宋等人提出可以通过增加一维PT对称SSH模型中的交替增益或损耗强度,来减少有限系统中边界模的耦合并恢复零模。所以在本文中我们主要研究的是有限大系统中,拓扑零模是否始终可以通过PT对称势能恢复。在有限大SSH模型的两端添加一对平衡的增益和损耗势函数,然后我们发现可以通过增大增益或损耗强度来恢复零模。然而在有限大系统下,具有其他类型PT对称势能的SSH模型的边界模恢复失败。所以我们得出结论,通过增加势函数强度?来恢复精确零模能否成功取决于PT对称势能的类型。在无限大系统中,如果零模不受额外PT对称势能的影响,那么在有限大系统中仅通过增加?是不会恢复零模的。最后我们讨论了具有PT对称的自旋轨道耦合SSH模型的边界模,也得到了同样的结论。我们的结论可以很容易的在具有可控的增益或损失的硅波导平台进行仿真。
其他文献
随着1960年世界上第一台激光器的研制成功,被称为“最快的刀”、“最准的尺”、“最亮的光”的激光开始了它在科研及社会生活各领域内的应用,大大推进了科技的发展和社会的进步。通过将它应用于微观世界,人们也能更加精确地认识宏观世界的本质与奥妙。20世纪末,朱棣文等人因为在超冷原子领域的开创性研究而获得了诺贝尔物理学奖,自此,超冷原子系统作为一个人为可控平台开始活跃在物理学的诸多前沿研究中,光与原子的相互
碱金属原子的超精细结构的测量是人们关注的重要问题。对于碱金属原子S态和P态的超精细结构,实验结果与理论预测一致。然而,由于强关联效应和屏蔽效应,碱金属原子D态的超精细结构测量一直以来是一个巨大的挑战。由于碱金属原子从S态激发到D态不能通过基态的单光子跃迁来实现,而可以通过双光子跃迁来实现。为了减小多普勒展宽效应,采用无多普勒双光子光谱进行较为精确的测量。该技术结合选定的激光频率,可以确定室温下碱金
量子信息科学是量子物理与信息科学交叉融合而迅速发展起来的新兴前沿学科,由于它可以提供在原理上绝对安全的通信和巨大的并行计算能力,使其成为科技界的重点研究方向。量子网络是目前量子信息领域的一个重要研究任务,量子信道和量子节点是组成量子网络不可或缺的部分。量子信道用于传输量子信息,量子节点处理信息的提取、存储和纯化等工作。俘获的离子、原子和量子点等介质都可以作为量子网络的节点。以原子为介质搭建量子节点
里德堡原子是一种激发态原子,其中最外层电子被激发到主量子数很大的能级。因其具有较大的原子半径与极化率、与外场强的耦合作用以及较长的辐射寿命等奇异特征,使里德堡原子在量子传感、量子信息、量子模拟、电场测量、微波场测量以及超冷等离子体等方面都有重要的应用。里德堡原子的寿命测量不仅对偶极矩阵元、散射长度和极化率的理论计算非常重要,而且对波函数的确定、黑体辐射的研究以及光电离率的测量也非常有意义。本文展示
量子纠缠,作为量子光学中最有吸引力的研究方向之一,不仅仅能帮助人们更深入地理解量子力学中的某些基本问题(如量子非局域性、量子退相干机制、波函数塌缩机制等),而且也是量子计算、量子信息处理以及构建量子网络过程中非常重要的量子资源。连续变量量子纠缠态光场,在实现量子计算指数加速、可扩展性和较强的纠错能力方面有着特有的优势。制备连续变量纠缠态光场的传统方法是利用光学参量过程,主要集中在光频波段,在能量守
在过去的几十年中,除了研究量子力学的基本概念外,量子光学的发展也很迅速,尤其是压缩态光场。压缩态是噪声分布被压缩的相干态,即一种非经典现象,由于其某个正交分量的量子噪声低于经典散粒噪声极限,根据这种特点我们可以将压缩态光场应用在很多领域,如:精密测量、量子通信、量子雷达等。压缩态光场的产生方式有多种,其中光学参量振荡是一种很有效的方法,它是在一个OPO腔中,根据晶体的非线性效应来发生光学参量下转换
基于光与原子相互作用的光放大效应,是原子非线性效应的重要体现之一,在制备新型的纠缠关联光场、光学非互易传输以及全光控制量子器件等领域有着重要的研究价值。从上世纪末至今,人们对基于原子相干的光学非线性效应进行了大量的研究,并发现许多经典有趣的物理现象,比如相干布居俘获、电磁诱导透明、电磁诱导吸收、四波混频效应等。而基于原子相干的四波混频已经成为当前量子信息处理的一个重要研究方向。其中比较著名的研究内
里德堡原子的轨道半径大,极化率强,寿命较长,是处于高激发态的原子。并且里德堡态的能级间隔包含微波和太赫兹波段的频率范围,因此成为微波和太赫兹波量子传感器的有力竞争者。其次,基于AC斯塔克效应(AC Stark effect),通过测量里德堡原子能级的频移可以实现微弱静电场的测量。另一方面,由于里德堡原子对最外层电子的束缚能力弱,可以用来研究等离子体的自发产生和重组效应。近年来,激光冷却与俘获原子取
量子行走起源于经典随机行走,现在已成为一种通用的量子模拟方案。迄今为止,人们已经在越来越多的物理系统中实现了量子行走,例如光学谐振器、冷原子、超导量子比特、单光子、势阱俘获离子、耦合波导阵列以及核磁共振等。在这些系统中引入相互作用、无序、缺陷和跃迁调制等,研究它们对量子行走动力学行为的影响,是备受研究前沿关注的基础问题。利用量子行走可以刻画系统的很多物理性质,如拓扑、纠缠、和关联性质等。通过研究量
四波混频(FWM)作为重要的三阶非线性效应从上世纪以来就被广泛研究。随着电磁感应透明(EIT)等原子相干效应的发现,人们将EIT应用到FWM的研究中,极大地增强了FWM效率,产生的光束之间具有强的量子关联性可以用于许多领域,如:量子通信、光谱分析和量子成像等,其研究使FWM的应用更加丰富。本文基于双EIT原子系统,开展有关FWM的理论和实验研究,论文主要分为以下四个部分:一:对本文涉及到的物理概念