论文部分内容阅读
为了满足我国航天、航空事业对于发动机轻质高强合金板材的迫切需求,TiAl板材的研制具有十分重要的理论和实际意义。本文利用Ti板材和SiC颗粒增强Al基复合材料板材为原材料,采用叠轧-反应退火合成工艺制备得到TiAl基复合材料板材。在制备板材过程中,利用SiC颗粒与Ti及Al高温下的化学反应,原位合成增强相,最终成功制备出同时具有微层(Ti3AlC+Ti8C5)与弥散颗粒Ti5Si3两种形态增强体混杂增强的TiAl基复合材料板材。优势在于:一是利用叠轧-反应合成工艺制备TiAl基板材,成功避免了对于脆性TiAl材料进行直接轧制变形,降低了TiAl板材的制备难度;二是利用SiC颗粒与基体元素的高反应活性,制备出多种形态增强体混杂增强的TiAl基复合材料板材,为TiAl基复合材料板材的制备提供了一种新路径。本文系统地研究了叠轧-反应退火合成TiAl基复合材料板材的制备工艺,着重分析了叠轧变形过程和反应退火合成两阶段(低温反应退火+高温反应退火)过程中的物相组成,组织演化规律及反应产物的性能特点,并对具有(Ti3AlC+Ti8C5)微层及弥散Ti5Si3颗粒混杂增强的TiAl基复合材料板材进行了片层化热处理,最终制备出具有细小全片层组织结构的TiAl基复合材料板材。对其进行了室温和高温力学性能测试,分析了增强体对TiAl基复合材料板材力学性能的影响。本文采用纯Ti板与SiCp/Al板为原料通过叠轧制备得到Ti-(SiCp/Al)多层复合板。Ti-(SiCp/Al)多层复合板的轧制试验表明,在高温轧制过程中,SiCp/Al复合材料板与纯Ti板具有良好的变形协调性。对轧制变形量为40%的Ti-(SiCp/Al)多层复合板进行微观组织观察,发现在Ti层与SiCp/Al层之间存在纳米级的TiAl3界面反应层。力学性能测试表明该种具有纳米TiAl3界面反应层的Ti-(SiCp/Al)多层复合板有着优良的综合力学性能。利用制备出的Ti-(SiCp/Al)多层复合板材反应退火合成TiAl基复合材料板材。本文通过DTA试验分析将反应退火合成工艺分为低温反应退火与高温反应退火两个阶段。在低温反应退火过程中,发现当温度为650℃时,在Ti-(SiCp/Al)界面处有TiAl3反应层生成。通过EDS/TEM分析发现,在TiAl3晶粒中固溶了微量的Si元素。并利用纳米压痕与原子力显微技术表征了Si固溶对于TiAl3相力学性能的影响。同时通过第一性原理计算从理论上分析了Si固溶对TiAl3模量及电子结构产生的影响。650℃反应退火过程中,随着TiAl3层的增长,TiAl3层与SiCp/Al层之间的应力不断增大,最终导致多层复合板材发生层间开裂。表明在此温度下无法顺利将Al基复合材料中的Al全部转化为TiAl3相。当低温反应退火温度为700℃时,由于液相Al的参与导致Ti-Al间的反应剧烈,使得TiAl3反应层的增长速率明显加快。经过700℃/10h低温反应退火后,可将Al基本转化为TiAl3相。通过EDS及XRD分析发现低温反应退火后只有微量Al残余,这些Al可以有效地将松散的TiAl3相连接在一起,避免低温反应退火后板材发生层间开裂,有利于进一步高温退火反应的顺利进行。在此过程中,液相Al与SiC颗粒间发生微弱反应,生成少量的Al4C3相。对经过700℃/10h低温反应退火后的复合材料板材进行高温反应退火,温度选定为1200℃。在高温反应退火过程中,低温反应退火后残余的纯Ti层全部转化为Ti3Al金属间化合物相。同时在Ti3Al层与TiAl3层中间有连续TiAl反应层及非连续TiAl2层生成。通过物相鉴定发现,增强体SiC颗粒及在低温反应退火阶段生成的Al4C3相全部消失,原位合成Ti3AlC,Ti8C5及Ti5Si3增强体。通过组织观察发现,Ti3AlC与Ti8C5被推挤到原始SiCp/Al的中心线区域形成微层结构,而Ti5Si3颗粒分布在TiAl及TiAl2反应层中。通过EDS/TEM分析发现Ti5Si3相中有微量Al元素固溶,并通过第一性原理分析了Al固溶导致的Ti5Si3形成能,模量及电子结构的变化情况。随着高温反应退火的进行,TiAl3层及Ti3Al层不断被消耗,TiAl2层先增厚后减薄,最终形成具有TiAl,Ti3Al层状分布结构的TiAl基复合材料板材。通过片层化热处理,使得TiAl基复合材料板材基体组织转化为全片层结构。由于Ti5Si3颗粒的分布特点,导致形成的全片层结构团簇尺寸细小。通过纳米压痕试验发现,微层(Ti3AlC+Ti8C5)及颗粒Ti5Si3的引入使得TiAl板材的硬度及模量进一步提高。同时微层(Ti3AlC+Ti8C5)使得TiAl复合材料板材的断裂韧性性存在方向性,与加载方向相关。高温拉伸试验表明,随着温度升高,TiAl复合材料板的抗拉强度不断增加。