论文部分内容阅读
本文针对频谱资源有限和用户数急剧增加的矛盾详细论述了三种GSM系统与CDMA系统同频传输实现系统扩容的方案。即N-CDMA覆盖GSM扩容;W-CDMA覆盖GSM扩容;CDMA/TDMA混合多址扩容。窄带覆盖的基本原理是N-CDMA信道不与GSM频带在同一小区的同一扇区重叠,而是和N-CDMA扇区相邻小区里的,且与该扇区不相邻的GSM扇区重叠。宽带覆盖的基本原理是在同一扇区,宽带CDMA与GSM同频传输,而在宽带CDMA的发送和接收端使用了高性能的窄带陷波滤波器,陷波的频带正好是GSM信道所用频带。CDMA/TDMA混合多址扩容的基本原理是在发送端,通过扩频码对GSM信号进行直接序列扩频,使其多址方式由TDMA变换为CDMA/TDMA,然后与CDMA信号在空间同频传输;在接收端,使用相同的扩频码对CDMA/TDMA信号进行解扩,使其多址方式由CDMA/TDMA还原为TDMA,由此可以将GSM与CDMA两种信号进行分离。本文通过对多址干扰的数学建模分析,得出窄带覆盖系统容量是纯GSM系统的4.75倍,宽带覆盖系统容量是纯GSM的2.50倍。本文还提出用完全互补码作为CDMA/TDMA混合多址的扩频码,分析了完全互补码的相关特性,并给出了一个时隙内GSM用户被扩频调制的具体过程。理论分析得出基于完全互补码扩频的CDMA(CCC—CDMA)的多址接入干扰为零。从而极大的增加了CDMA/TDMA混合多址结构的容量。分析比较三种扩容方案可得:窄带覆盖无线接口的改变最小;宽带覆盖最易与3G融合;CDMA/TDMA混合多址结构的容量最大。论文最后的仿真验证了三种扩容方案的可行性。