论文部分内容阅读
煤炭是支撑国家战略性发展的重要能源。在山西等地区煤炭交易市场中往往受到地方性政策、业务发展水平和市场服务能力等多种因素限制,煤炭商品标准化程度低、供销模式过于传统化、煤炭产运衔接不利等问题逐渐暴露。市面上大量优质企业往往面临生产制造任务紧急而难以短期内购得品质上乘、价格合理、运费低煤炭产品的尴尬局面。考虑到煤炭商品本身的价格和销售过程中长途产生的运费问题使得煤炭交易很难实现标准化,难以结合自身属性制定理想的销售策略以找到最优质的买家。随着现代化网络交易模式的不断兴起,利用智能推荐系统通过一系列决策可以引导买家做出相对合理购买行为,该方法或将为煤炭行业数字化转型起到推波助澜的作用。然而,在面对数量众多的受众群体时,往往存在已知用户对商品评论信息较为稀缺的情况,因此会带来的严重的物品评分矩阵稀疏性问题。基于以上分析,本文主要研究内容如下:(1)从协同过滤思想出发设计了基于模型的推荐方法TCRM,使用卷积神经网络从用户和项目文本信息中获得相关属性的词嵌入作为特征,将特征向量作为推荐模型的关键因子,融合矩阵分解方法通过用户特征及项目特征向量重构评分矩阵以产生用户对项目的评分,并结合用户之间特征的相似度及项目之间的特征相似度完成不同维度下的煤炭产品推荐。(2)提出GCEM模型将TCRM通过多通道分组膨胀卷积的方式对卷积核进行改造,增大了滤波器的滑动感受野,避免了膨胀卷积在像素计算中的栅格效应问题,较大程度的保留了属性文本语义信息的连贯性。(3)在GCEM模型的基础上根据实际评分矩阵与预测矩阵观测误差基于高斯分布的假设,通过后验概率最大的目标优化矩阵分解,提出了DCPMF推荐模型。在总体框架的基础上引入了Spark技术在煤炭交易数据集上对所提方法进行对比实验,实验结果表明,本文提出的TCRM、GCEM、DCPMF模型在有效挖掘辅助信息的同时拥有较优的推荐准确率及RMSE值,显著提高了推荐质量。