【摘 要】
:
光学和纳米光子学研究的核心问题之一可归结为对光与物质相互作用物理机制的理解以及如何构建新颖的器件对光进行有效操控。人工微结构超材料作为一种新型的材料结构,通过对结构几何自由度的人工调控可实现对电磁波的定制化操控。超构表面,即二维的超材料,是由亚波长尺度的超构单元构成的人工微结构阵列。通过对超构单元电磁特性和空间排列序的有效人工构造,超构表面能以超薄、平面可集成的独特几何构型在亚波长空间尺度上实现对
【机 构】
:
中国科学院大学(中国科学院上海技术物理研究所)
【出 处】
:
中国科学院大学(中国科学院上海技术物理研究所)
论文部分内容阅读
光学和纳米光子学研究的核心问题之一可归结为对光与物质相互作用物理机制的理解以及如何构建新颖的器件对光进行有效操控。人工微结构超材料作为一种新型的材料结构,通过对结构几何自由度的人工调控可实现对电磁波的定制化操控。超构表面,即二维的超材料,是由亚波长尺度的超构单元构成的人工微结构阵列。通过对超构单元电磁特性和空间排列序的有效人工构造,超构表面能以超薄、平面可集成的独特几何构型在亚波长空间尺度上实现对光场多维度的灵活操控。正是由于丰富的人工可调自由度和多参量操控的物理机制,光学超构表面被预言有可能产生颠覆性的应用技术。面向具有诸多光电技术重大应用的红外光学,基于人工微结构超表面强大的光场操控能力,发展应用于红外波段的小型化、高效和多功能集成的光子操控器件具有非凡的意义。本论文基于超构表面光场调控物理,着重研究具有光子轨道角动量、偏振和宽带色散操控功能的透射型硅基超构光学器件,主要研究内容如下:1.研究了基于高对比度超构表面(Si/SiO2)的高效聚焦光学涡旋的产生和轨道角动量光束的检测方法。通过研究聚焦光学涡旋波前阵面的演化形式,并对超构单元的电磁响应参数(透射振幅和相位)进行优化设计,引入超构表面的相位梯度分布重构波阵面,产生了近红外波长(1550nm)的轨道角动量光束,获得了70%-80%的聚焦效率。研究了光学涡旋与超构表面的相互作用,从轨道角动量湮灭的角度出发,利用干涉全息原理和离轴构型研究了基于超构表面的多通道聚焦光学涡旋的产生和光子轨道角动量的检测。2.提出了偏振和相位色散的多参量联合调控理论模型和多功能宽带消色差超构器件的新思路,并进行了实验验证。利用双面抛光的硅片加工了两种工作于中波红外的宽波段(3.5-5μm)偏振调控消色差聚焦超构器件(BAFOV-metasurface和BAFS),器件具有较大的数值孔径(NA=0.45)。首先,研究了BAFOVmetasurface对宽带光束的波前整形、消色差聚焦和偏振操控性能,将不同偏振态的宽带入射光调制成携带不同轨道角动量的消色差聚焦光学涡旋。另外,通过引入离轴相位梯度,构造了一种偏振操控的宽带消色差聚焦分束器(BAFS)。BAFS在连续带宽内可选择性地将不同偏振态的光子汇聚到焦平面上设定的不同位置,聚焦光斑具有接近衍射极限的特征。3.基于几何相位的宽带消色差超构透镜对入射光的偏振特性具有依赖性且功能单一。这里基于全硅基超构表面,在中波红外3.5-5μm实现了具有高数值孔径(NA=0.45)的偏振不敏感宽带消色差超构透镜。实验上验证了所构建超构透镜的宽带消色差的衍射极限聚焦和中波红外宽带成像性能。成功实现了偏振可控的变焦消色差超构透镜和宽带消色差聚焦涡旋光束的产生,进一步开发了宽带消色差超构透镜的光子操控维度。4.基于Si3N4/Si的复合双层异质超构表面构型,提出了中波红外的高效波长色散调控超构表面设计新思路。揭示了在宽带和多波长消色差超构透镜设计过程中自由谱参数的物理机制。通过在全硅超构表面上构造一层亚波长厚度的Si3N4薄膜形成复合双层异质超构表面,有效拓展了全硅超构表面的可调自由度。基于这种异质超构表面构型,在整个中波红外3μm到5μm(中心波长50%的带宽)的连续波长范围,研究了具有高效聚焦性能的宽带消色差超构透镜,构造的两个消色差超构透镜(NA=0.24,NA=0.45)分别实现了约70%和62%的宽带聚焦效率。另外,通过灵活地操控不同离散波长的相位轮廓,构建了波长调控的离散多功能超构光学器件。实现了对多个离散波长的消色差聚焦分束操作和波长调控的聚焦光学涡旋的产生(λ1=3.5μm L1=-1,λ2=4.25μm L2=0,λ3=5μm L3=1)。
其他文献
红外探测系统的重要发展方向之一是“SWaP”,也就是更小的体积、更轻的重量和更低的功耗。而红外光电探测器由于禁带宽度窄,一般工作在液氮温区,制冷系统是带来探测系统体积功耗的主要原因。因此,提高红外探测器的工作温度并且降低制冷系统的功耗和体积,可以推动红外探测技术在便携式手持装备等小型化设备方面的发展和应用。红外探测器在高工作温度下面临的两个主要问题:首先,探测器的暗电流是温度的指数函数,随着温度的
碲镉汞红外探测器具有波段覆盖宽、灵敏度高等优越性能,是航天遥感、天文科学等领域的红外探测的首选。随着红外探测与成像的空间分辨率不断提升,红外探测器规模不断扩大,但因其低温热失配引发的可靠性问题愈加严重。为此,本文重点开展大面阵芯片面形校正、低热应力结构设计等可靠性技术研究,具体研究内容如下:1.实现了大面阵红外焦平面探测器的结构优化设计。通过对探测器的结构尺寸进行优化以及材料参数合理选择等方法来减
近年来,超大规模线列红外焦平面探测器组件在气象、资源、环境及天文等领域有着重要的应用。受背景噪声抑制的限制,红外探测器往往需要在100K以下的低温工作。随着系统应用对大视场、高空间分辨率及高时间分辨率等需求的不断提高,单个探测器模块规模的发展已不能满足设计指标要求,需要将几个甚至几十个探测器模块在杜瓦组件内集成,而探测器模块的热匹配性、组件杜瓦的传热及轻量化等问题凸显。因此,发展超大规模线列红外焦
科技发展的本质是人类不断探索和认识世界的过程。红外天文探测器是人类探索外太空世界的有力工具,其重要性不言而喻。阻挡杂质带(Blocked Impurity Band,BIB)红外探测器凭借其优异的探测性能,已成为目前中、远红外天文探测领域的主流探测器,被广泛应用于各种大型天文探测平台上,如宇宙背景探测器(Cosmic Background Explorer,COBE)、斯皮策(Spitizer)太
红外热像仪是CASEarth小卫星的载荷之一,在505km轨道高度通过长线列摆扫实现30m分辨率和300km幅宽,是我国目前在研幅宽分辨率比最大的热红外载荷。CASEarth卫星红外热像仪发射入轨后,将为人类活动范围、经济发展情况的探测、污染(水、土和大气污染)监测与生态功能评估、水资源和耕地普查等提供高分辨率的热红外遥感数据。高精度的辐射定标是遥感数据定量化应用的关键。红外热像仪的辐射定标精度受
焦平面探测器是成像系统的核心部件,是实现探测、识别和分析物体信息的关键,在军事、工业、交通、安防监控、气象、医学等各行业具有广泛的应用。在航天工程和宇宙探索等需求的牵引下,红外成像探测器向大规模、多波段、高温等方向发展。受材料、器件工艺、成品率等因素的限制,单个焦平面模块还不能满足红外遥感等系统的需求,通过多芯片、模块化拼接成更长线列或更大面阵的方式,已经成为实现长线列和大面阵探测器组件的技术途径
高时效、高分辨率的热红外遥感影像是研究人类痕迹精细刻画,地表特征反演、资源勘查、及海洋生态监视等领域的重要资源。CASEarth小卫星是我国“地球大数据科学工程”专项支持的首颗卫星,其搭载的核心载荷红外热像仪可获取地表300Km幅宽30m分辨率的三谱段热红外数据。常用的线阵遥感相机数据获取方式主要有长线列推扫和短线列摆扫两种,但受卫星结构尺寸、重量、及功耗等工程边界条件约束,长线列推扫的成像方式难
微测辐射热计具有高响应、高集成度和室温探测等特点,目前已经在热成像、卫星遥感、环境监测、夜视、物质检测等红外领域有着广泛的应用。但氧化钒、非晶硅等热敏材料在太赫兹波段吸收系数较小;太赫兹波段的谐振腔加工困难;背景辐射噪声大等问题,一直制约着微测辐射热计在太赫兹和毫米波领域的发展和应用,发展高性能的太赫兹和毫米波微测辐射热计已经是当前的研究热点。另一方面,随着第三代探测技术的快速发展,集成多种探测功
超材料是利用介质或金属人工微纳结构来调控物质宏观物理性质的新型材料形态。这个概念被提出之后便被预言可能产生颠覆性的应用,多年来作为学科前沿热点获得持续广泛关注。光学超材料更是因其蕴含的丰富物理机制及光电技术重大应用前景成为了超材料的核心研究方向之一。其已被证明能够利用等离激元耦合、声子极化激元耦合、模式共振、模式湮灭等效应实现材料电磁参数的调制及复杂的光场调控功能,并且各种新机制、新特性、新功能仍
光是一种重要的信息载体,在人类认识和改造世界中扮演着重要的角色,随着科学的发展,人们逐渐认识到光的本质是电磁波。而实现对电磁波的人为操控,一直是人类梦寐以求的理想。人工电磁材料是将人造单元结构以特定方式排列形成的具有特殊电磁特性的人工结构材料。一维平面薄膜堆栈结构,是超构材料领域的一个重要分支,具有结构简单、制备容易、与现代半导体工艺兼容等特点,近年来正日益受到广泛关注。全无机铯铅卤钙钛矿量子点,