论文部分内容阅读
本文在前人工作的基础上,研究了熔盐电沉积TiB2镀层的若干问题,如阴极电流密度的大小对镀层质量的影响,镀层的耐电解质腐蚀性能,所用电解质体系的部分物理化学性质和电化学行为等。还研究了不同阴极材料抗钠和电解质的渗透性能以及常温固化TiB2/C复合阴极涂层在300kA预焙铝电解槽上的工业试验。采用了循环扫描伏安法、线性扫描伏安法、恒电流计时电位法(时间间隔<0.1s)和计时电流法(时间间隔<0.1s)研究了熔盐电沉积TiB2镀层的电解质体系在钨电极上的电化学行为。结果表明,在KF-KCI-KBF4体系中,B(Ⅲ)在钨电极上的电化学还原为简单的三电子一步反应,即B3++3e-→B。阴极过程在0.1~2V·s-1的扫描速率下接近于可逆过程,且受扩散控制,硼在钨电极上形成可溶性产物。在KF-KCl-K2TiF6体系中,Ti(Ⅳ)分三步还原为单质钛:Ti4++e-(?)Ti3+,Ti3++e-(?)Ti2+,Ti2++2e-(?)Ti。Ti(Ⅳ)在钨电极上沉积的成核过程为瞬时成核。在KF-KCl-K2TiF6-KBF4体系中,电活性物质K2TiF6和KBF4的摩尔比对B(Ⅲ)和Ti(Ⅳ)的还原电位以TiB2的阴极过程有较大的影响。当硼钛摩尔比B/Ti<2时,向负电位方向扫描时,基本上能区分出体系中不同离子还原所对应的还原波;而当硼钛摩尔比B/Ti>2时,Ti(Ⅳ)与B(Ⅲ)的还原波几乎合并为一个波。线性伏安曲线上峰电位的移动可能是由于钛与硼相互作用形成TiB2产生去极化作用以及离子产生浓差极化等因素造成的。这些基础理论的研究对于采用熔盐电沉积的方法来制备TiB2镀层提供了理论依据。研究了熔盐电沉积TiB2镀层两种电解质体系的部分物理化学性质,如密度、初晶温度和电导率。两种电解质体系中K2TiF6和KBF4的摩尔比不同。采用直接阿基米德法研究了电解质体系的密度;采用数字万用表与计算机串口相结合的测量技术,利用热分析法,根据步冷曲线研究了电解质体系的初晶温度;采用可变电导池常数(CVCC)法研究了电解质体系的电导率。结果表明,当温度在740~800℃之间变化时,两种电解质体系的密度均随温度的升高而略微降低,初晶温度分别为680℃和678℃,电导率的平均值分别为2.10772和2.02972,两种电解质体系的电导率均随温度的升高而增大。这部分物理化学性质的研究对于改善电解过程中的技术参数,提高电流效率,减少能耗等具有重要意义。采用熔盐电沉积的方法在石墨基体上制备了TiB2镀层,并对影响镀层质量的因素进行了研究,对镀层的成分以及元素分布情况等进行了分析。研究结果表明,阴极电流密度的大小对镀层质量有较大影响。所制备的镀层成分主要为TiB2,元素分布均匀,镀层厚度为0.2mm左右。将所制TiB2镀层作为铝电解渗透实验的阴极材料在工业铝电解条件下电解4小时,研究了镀层抗钠和电解质的腐蚀渗透能力。结果表明TiB2镀层较普通石墨阴极具有更好的抗Na和电解质腐蚀渗透的能力。研究了不同阴极材料在电解过程中的抗钠和电解质的渗透性能。结果表明,在石墨质阴极材料中,随着石墨含量的增加,其抗钠和电解质的渗透能力逐渐增强。振动成型TiB2阴极和全石墨化阴极炭块较石墨质阴极炭块具有更好的抗钠和电解质的渗透能力。但目前它们生产成本较高而限制了其大规模工业化应用。通过进一步改进它们的生产工艺和降低生产成本,它们将具有很好的工业化应用前景。研究开发了常温固化TiB2/C复合阴极涂层技术,并在两台300kA预焙铝电解槽上进行了工业试验。结果表明,两台试验槽启动5个月后与同期启动的对比槽相比,平均分别降低炉底压降9.2mV和10.7mV,平均提高0.67%和0.84%。TiB2/C复合阴极涂层的有效使用寿命为30个月左右。因此TiB2/C复合阴极涂层的使用对铝电解的生产起到了较好的节能降耗的作用,并且可效延长铝电解槽的使用寿命。