绝对式纳米时栅位移传感结构设计和参数优化

来源 :重庆理工大学 | 被引量 : 0次 | 上传用户:coolyangbo
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
高精密测量技术是影响高端制造业发展的关键性技术之一,其发展直接决定高精密位移测量领域的发展进程与高度,而高精密测量器件作为高精密测量技术的载体,作为把控精密制造质量及反馈位置的关键功能部件,这严重制约了如天体观察、航空航天、激光武器发射系统等领域关键性研究的发展。随着国家制造业的不断进步,对高精密位移测量器件的要求越来越严格,不仅需要达到纳米级的测量精度,而且要求该器件具有绝对定位功能。目前,应用最为广泛的测量器件当属绝对式光栅位移编码器,它经过了多年的发展,是一个非常成熟的产品。然而,由于国外的技术封锁和价格垄断,制约了我国制造行业的发展。为打破受制于人的僵局,迫切需要自主研发高精密测量技术。因此,作者所在团队提出了构建匀速运动参考系来搭建空间位移与时间变化之间关系的一种方法,利用时间测量空间来实现高精度和大量程测量。基于该原理,早期推出了对射绝对式纳米时栅位移传感器,该传感器具有高精度测量功能以及绝对定位功能的优点。然而,该传感器存在动尺与定尺间引线问题,在实际应用中增加了安装的难度,降低了其应用价值。为了解决这个问题,本文提出了一种新型的高精度反射绝对式纳米时栅位移传感器。本文将围绕该传感器进行研究和设计,总结如下:1)首先阐述了纳米时栅位移传感器的测量原理,设计了反射绝对式纳米时栅位移传感结构,通过增加反射电极和接收电极来实现信号反射功能,无需动定尺间引线,利用差极结构实现绝对位置测量,采用差动传感结构实现共模干扰的抑制。2)然后分析了反射式结构、非线性电场耦合和激励参数这三种影响参数的误差机理,建立了反射单列式和单列式纳米时栅位移传感器的电场仿真模型,验证了这三种影响参数的电场仿真误差规律。根据误差规律,提出了交叉反射结构和分时方法来抑制交叉串扰,提出了移相抑制法来抑制空间三次和五次谐波。3)最后完成实验平台搭建和测试,设计了硬件电路系统、软件系统以及传感器和测量平台系统,实现了激励信号分时间段产生,行波信号的自动拾取并处理,Nutt插值法计算位移,上位机数据采集并处理等功能。采用PCB工艺制作了长度L=600mm,周期数N=150的反射绝对式纳米时栅位移传感器样机,并进行了实验测试。针对实验结果提出了交叉反射结构、分时方法以及移相抑制法来进行结构参数的优化,实验验证得到优化后减小了一次和四次谐波误差,提高了传感器测量精度。综上所述,本文设计的反射绝对式纳米时栅位移传感器样机大量程误差补偿后实现了在400mm范围内达到±300nm的测量精度,并且能够实现绝对定位。这一研究成果为今后产业化发展打下坚实基础。
其他文献
近年来,Sn-Ag-Cu(SAC)系无铅合金因具有较低的共晶温度及良好的可焊性而被广泛运用于封装行业。高银SAC无铅焊料虽然具有较好的润湿性和抗氧化性,但使用成本高,接头脆性大,抗跌落性差。然而,降低Ag含量又会使焊接温度增加,热可靠性变差。所以,在不同的服役环境下,选择一种适用性强,性能优良,可靠性好,并且价格实惠的无铅焊料变得尤为重要。随着大功率器件的逐步推广和应用,其封装体内的热流密度越来越
随着环境污染和能源危机的问题日趋严重,新能源车辆技术应运而生,混合动力汽车具有动力性好、续驶里程长及排放低等显著优势。采用行星齿轮机构的动力耦合系统混合动力汽车具有丰富的工作模式,能够适应复杂多变的工况;在车辆运行中,能够实现发动机与车轮处转速和转矩的双重解耦。由于双行星排式混合动力汽车有多个动力源耦合输入,在传动系统控制研究方面,需综合考虑发动机和电机等部件效率特性与动力耦合机构的工作特性,从而
自动驾驶因其对社会和交通的创新影响越来越受到社会的关注。凭借广泛的探测范围、准确的测量数据,激光雷达在当前自动驾驶领域被深入地研究和广泛地应用。高精度激光雷达传感器每秒钟接收数百万个点,其中一半的激光雷达点云数据从地面反射。为了保证自动驾驶汽车的实时信息处理,不能直接使用原始数据,需要进行一些预处理,通过地面点分割来去除地面点,从而大大提高后续的聚类、识别、跟踪和控制等任务的速度。本文基于激光雷达
发动机作为船舶重要的核心部件,其锻件的质量与制造水平决定着发动机的可靠性以及寿命。对锻件的形貌、尺寸进行高效、准确的三维数字化测量,对提高锻件的锻造质量和加工效率具有十分重要的意义,因此本文设计和搭建了线结构光视觉三维测量实验平台,对锻件的形貌和尺寸进行测量。大型船舶发动机锻件在线结构光视觉测量中,光条中心提取是其关键技术,直接影响到测量精度。本文采用一种基于改进的灰度重心提取算法,经系统标定后重
光波导器件广泛应用于传感、光电集成、通信、医学诊断等领域。光波导器件的响应谱包括幅值谱和相位谱,可用于分析、设计和重构光波导器件。幅值谱可利用现有的光谱分析仪进行测量,而相位对光波导器件的结构变化和噪声干扰极其敏感,相位谱的测量相对比较困难,很少有对应成熟的分析仪器。目前,相位谱可利用射频调制法、相干干涉法、脉冲扫描法等方法进行测量,但存在测量时间长、操作复杂、成本高、精度低等问题。本课题组以前提
随着图深度学习强大的特征提取能力被不断发掘,越来越多的研究者将目光投入到了这个领域。图是一种非结构化数据,它能更好地描述这个世界从而完成各项任务,在计算机视觉领域图深度学习能完成图像识别、图像分割等任务。这些任务都可以利用超像素算法作为图像预处理方法作为第一阶段的特征提取和图嵌入,此时图像数据是非结构化的数据表示,使用标准的卷积方法提取特征困难,但使用图卷积方法可以轻易地聚合信息从而更新节点。同时
随着现代汽车工业以及道路交通建设发展,我国私人汽车保有量维持较高水平,截止到2020年,保有量已达2.8亿辆;与此同时,国内交通整体形势依旧严峻,平均每年交通事故数量达20余万起,死亡人数6万余人,直接财产损伤达10多亿元,交通安全急需深入研究。就目前研究状况而言,在汽车安全领域,乘员碰撞损伤准则及乘员保护装置主要基于50百分位假人模型制定,近年来肥胖人口比例明显增加,基于标准体型的乘员损伤标准和
路面是汽车行驶时的输入,直接影响着车辆零部件使用寿命、汽车平顺性等。目前,研究路面对汽车影响的方法主要有实车试验法和仿真模拟法。汽车试验场给实车试验提供各种典型路面激励,但是其存在试验周期较长、效率较低、投入资金和人力较大等不足。仿真模拟法大多选用标准路谱或者随机道路载荷谱的方式进行仿真分析,虽然提供了路面激励,但是也存在不能反映出汽车在实际运行工况下的振动特性、仿真结果误差较大等不足。因此,本文
传统的可变几何截面涡轮增压器(Variable Geometry Turbocharger,VGT)控制在工业应用中多采用比例微分积分控制器(Proportion Integration Differentiation,PID)。但是PID控制需要人工调节参数,且调参过程复杂,需要较长的调参周期,在完成调参以后,控制器参数不能随着驾驶工况动态改变。有学者提出利用经典强化学习算法深度确定性策略梯度(
金属材料由于具有高强度、硬度及良好的塑性等优良机械性能,广泛应用于武器装备、航空航天和交通运输等领域,是许多工业产品无可替代的组成部分。随着科技的发展,金属材料的服役环境更加恶劣,常常面临高温、高压和高冲击载荷等多种极端条件,如航空发动机的涡轮叶片在高温高压环境下工作时还经常承受冲击载荷作用,坦克装甲在受到攻击时会同时经受高温和高压作用。金属材料的失效破坏通常在这些环境下出现,并伴随着巨额的经济损