【摘 要】
:
具核梭杆菌(Fusobacterium nucleatum,F.nucleatum)是引起病理性口臭的主要致病菌之一,除产生挥发性硫化物(Volatile sulfur compounds,VSCs)外,形成生物膜更是其致臭的关键。由于传统治疗口臭的方法存在复发率高、副作用较多等问题,益生菌等生物疗法逐渐被研究者们关注。本研究为了筛选在口腔中性p H条件下仍能有效抑制F.nucleatum生物膜形
论文部分内容阅读
具核梭杆菌(Fusobacterium nucleatum,F.nucleatum)是引起病理性口臭的主要致病菌之一,除产生挥发性硫化物(Volatile sulfur compounds,VSCs)外,形成生物膜更是其致臭的关键。由于传统治疗口臭的方法存在复发率高、副作用较多等问题,益生菌等生物疗法逐渐被研究者们关注。本研究为了筛选在口腔中性p H条件下仍能有效抑制F.nucleatum生物膜形成的益生菌,用源于不同益生菌的p H 6.6无细胞发酵上清液(Cell-free supernatant,CFS)处理F.nucleatum,通过结晶紫半定量法测试其抑制F.nucleatum生物膜形成的能力,从而筛选出一株抑制效果突出的植物乳杆菌(Lactobacillus plantarum,L.plantarum)UD01。利用微量倍比稀释法测定UD01 CFS(p H 6.6)对F.nucleatum生物膜形成的最低抑制浓度(The minimum biofilm inhibition concentration,MBIC)为250μL/m L。扫描电镜(Scanning electron microscope,SEM)和激光共聚焦显微镜(Confocal laser scanning microscope,CLSM)结果显示,UD01 CFS(p H 6.6)处理下F.nucleatum生物膜结构疏松、厚度变薄。生长曲线、外膜粘附相关基因表达以及胞外聚合物(Extracellular polymeric substances,EPSs)含量变化表明UD01 CFS(p H 6.6)并不能抑制F.nucleatum生长,其可能的作用机制是通过下调粘附相关外膜蛋白基因的表达、减少胞外蛋白和胞外多糖的分泌,从而降低F.nucleatum粘附能力,最终达到抑制生物膜形成的目的。本研究筛选出的植物乳杆菌UD01其CFS在口腔中性p H条件下仍具有抑制F.nucleatum生物膜形成的能力,可作为防治口臭的备选菌株。
其他文献
断裂韧性是在役设备和辐照材料剩余寿命预测以及安全评估的重要指标之一。在材料取样条件有限的情况下,断裂韧性无法通过常规样品力学试验测得,需要采用小样品外推获取。小样品分为两类:常规小型试样与小冲杆试样。本文采用粘聚力模型对这两类样品进行断裂过程的有限元模拟分析,基于常规小型试样的实验结果,采用反向有限元法获取材料的断裂韧性参数;对小冲杆样品进行优化设计,验证了反向有限元法对小冲杆断裂分析的适用性。对
BaTi2O5玻璃是无网格形成体氧化物玻璃体系中重要的一员,其独特的结构和性能特征一直吸引着大家对其进行持续深入的研究:从玻璃形成理论和玻璃结构研究角度出发,BaTi2O5玻璃是一个很好的理论研究范本;从功能材料开发的角度出发,BaTi2O5玻璃具有优良的光学性能,其退火单晶具有可媲美Pb Ti O3的优良铁电性,是极具潜力的下一代复合功能材料。但BaTi2O5的玻璃形成能力较差,常规熔炼技术无法
具有特定尺寸分布和取向的反浸润纳米颗粒阵列具有独特的光、电、磁及催化性能,在等离子体技术、传感器和一维纳米结构合成等方面具有广阔的应用前景。目前的研究主要集中在处理参数方面,但反浸润基底也是影响颗粒分布和取向的重要因素。本论文基于课题组前期研究成果,即热处理过程中氧化物基底生长现象,在不引入额外组分的情况下,研究基底对反浸润颗粒的尺寸分布和取向的影响。本研究成果可为调控反浸润纳米颗粒提供新思路。主
低维材料有着不同于常规块体材料的新奇性质。现代半导体芯片已经可以达到10 nm以下工艺,以量子通信、量子计算等为标志的第四次工业革命已经初露萌芽,人类社会即将进入“量子时代”,理解低维物理原理对于量子器件制作有着重要意义。当器件的物理尺寸与电子的费米波长相近时,电子的运动在某些方向上会受到限制,电子的能级由准连续能级变为离散能级,就会表现出量子尺寸效应。量子尺寸效应会对材料的诸如超导性、热稳定性、
由于体积小、重量轻等诸多优点,钛合金整体叶轮被广泛应在飞机环控系统离心通风机等透平机械上,其直径一般在150 mm左右,在沙尘、高温和高压等极端环境下工作,对加工质量提出了十分严苛的要求,且钛合金为典型难加工材料,加工过程刀具磨损严重、加工效率低以及加工精度不易保证。针对以上问题,本文围绕整体叶轮铣削参数优化,进行了以下研究工作:研究了数控铣削加工过程物理仿真中最重要的物理量:铣削力,针对整体叶轮
复合化是提高金属材料综合性能的有效途径,在金属基体中引入颗粒、晶须等高性能增强体,既可以提高金属材料的力学性能,也可以赋予金属材料本身不具备的功能特性。通过这种方法制备而成的金属基复合材料具备金属良好的韧性、可成型性等优点与增强体的高硬度、高弹性模量等优点,得到了广泛的工程应用。在实际使用中,金属基复合材料结构件可能会在复杂的载荷工况下发生振动并随之产生噪音。复杂载荷工况导致的这些异常工作状态一方
胞嘧啶(cytosine,C)是核酸分子4种基本碱基之一,在生物体内主要以核苷或核苷酸形式存在,游离状态的胞嘧啶很少。以杀稻瘟菌素(blasticidin S,BS)为例,绝大多数以游离胞嘧啶为前体的核苷类抗生素的生物合成基因簇中会编码水解胞苷单磷酸(CMP)生成游离碱基的水解酶,但谷氏菌素生物合成基因簇及其产生菌的基因组中均没有类似的水解酶,其体内游离胞嘧啶的来源尚未阐明。本研究为探究谷氏菌素原
Dynamo理论是描述天体磁场被其内部的旋转导电流体诱导放大并维持的理论,它是迄今为止最为人们所广泛接受的用以解释地球磁场产生的理论。在其被提出的近百年来,虽然大部分的问题都已经被解决,但是人们依然还未完全理解dynamo理论的详细机理。在此背景下,本文采用谱方法对dynamo理论中一种具有fast dynamo性质的典型模型ABC dynamo进行了数值模拟。在验证了可靠性后,对流动在完全对称情
异重流现象在自然界许多场合以及实际工程中存在。在气象学研究中,海风前锋、山地冷空气以及沙尘暴的研究属于空气异重流范畴。在地质学研究中,大陆坡上海底峡谷的形成以及雪崩现象也与异重流的形成有关。在环境工程中,有害重气体的泄露、海上油船失事等过程均形成异重流造成环境污染。在海洋工程中,入海口处的海水与河水的密度差引起的异重流速度快、破坏力强,对于该海域内的海洋工程的安装与作业会产生较大的影响。本文主要采
随着我国北斗三号系统卫星即将发射完毕,北斗导航系统(Beidou Navigation Satellite System,BDS)将面向全球开启全面服务。作为全球导航卫星系统(Global Navigation Satellite System,GNSS)的重要一员,BDS与俄罗斯的格洛纳斯卫星导航系统(Global Navigation Satellite System,GLONASS)和美国的