K理论在一类算子逼近中的应用

来源 :河北工业大学 | 被引量 : 0次 | 上传用户:hqianhua
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
K理论作为非交换拓扑的基本元素,对算子代数的研究具有深刻的影响,我们可以通过算子的K群来了解算子的结构,还可以用算子换位代数的K群来刻画算子的相似性,  设н为复的可分的Hilbert空间,∫(н)为н上的有界线性算子的全体,本文证明了对于∫(н)中的任何一个算子T,都可以用有限个具有较好性质的强不可约算子的直和来逼近它,这些强不可约算子的换位代数都是本质可交换的,其换位代数的半群同构于N或N(2),Ko群同构于z或Z(2),N表示自然数群,z表示整数加群。
其他文献
概率论对研究关于经济、金融、工程等一系列问题提供统的了较为系研究框架。Borel-cantelli引理又是概率论中一个非常重要的引理,在证明概率论中一些重要的定理时起到重要的作
在线性规划问题中,如果原始问题(P)和对偶问题(D)中有一个可行,那么它们的最优值相等,而在锥规划问题中,“零对偶间隙”这一性质往往是不成立的,很自然地,我们要问:是否存在某些形式
Hilbert不等式(包括积分型和离散型)是分析学中的重要不等式.本文通过引入适当权函数的方法,对积分型和半离散型 Hilbert不等式进行一些改进、推广,证明了常数因子是最佳的,并给出
在工农业生产及其科学研究中,大量的实际问题可由具间断系数的二阶椭圆方程刻画,这类由间断系数所导致的真解在间断面上出现跳跃的现象,我们称之为界面问题,间断面称之为界面.由于
本文对任意有限p-群P,定义了一个新的特征子群序列此处公式省略:,并证明了当G为p-稳定群时,如果此处公式省略:,则在适当条件下,每个Di(P)均为G的特征子群.该结果推广了Glauberman