【摘 要】
:
近年来,深度学习在医学影像处理方面应用愈发广泛,二者的结合促使临床诊断方式发生改变。目前医学影像技术中磁共振成像(Magnetic Resonance Imaging,MRI)凭借良好的软组织分辨率和空间分辨率等优点,成为临床检查的常用手段之一。然而,在MRI成像过程中,由于患者不自觉运动容易产生图像间的非刚性形变,严重影响生成图像间的解剖对应关系。本论文旨在利用基于深度学习的配准技术,解决MRI
论文部分内容阅读
近年来,深度学习在医学影像处理方面应用愈发广泛,二者的结合促使临床诊断方式发生改变。目前医学影像技术中磁共振成像(Magnetic Resonance Imaging,MRI)凭借良好的软组织分辨率和空间分辨率等优点,成为临床检查的常用手段之一。然而,在MRI成像过程中,由于患者不自觉运动容易产生图像间的非刚性形变,严重影响生成图像间的解剖对应关系。本论文旨在利用基于深度学习的配准技术,解决MRI间的非刚性形变问题。为实现该目的,本文从减少配准网络复杂性以及构建形变场间关系入手,基于深度学习网络进行配准研究。同时由于图像间灰度变化会对配准结果产生不同程度的影响,本文设计了形变一致性损失函数,并将结合该损失函数的深度配准网络用于心脏MRI和存在明显灰度差异的乳腺动态对比增强MRI(Dynamic Contrast-enhanced Magnetic Resonance Imaging,DCE-MRI)的配准中。本文工作主要分为以下三方面:(1)基于多约束的深度形变配准网络研究:针对MRI间存在的非刚性形变,本文提出结合多约束的形变配准网络(Multi-constrained Network,MC-Net),用于MRI的无监督配准。该网络首先通过交换形变预测模块中浮动图像与目标图像的位置获得不同输出信息,随后结合这些输出构建由不同图像间的相似性约束、正则化性约束和循环对称性约束组成的多种约束关系,最后利用这些约束构成的损失函数训练配准网络。本文算法在评价MRI形变配准后生图像间相似性指标上的结果为0.767,以及评价生成形变场性能指标结果为0.195%。(2)基于新的形变一致性损失函数的配准模型:针对现有形变配准模型多基于图像间相似性因而易受灰度变化影响的问题,本文设计了形变一致性损失函数,对多模块配准网络中不同阶段生成形变场间的对应关系建立约束。通过在心脏MRI上的实验表明,添加此损失函数后,配准网络在评价配准前后图像间结构差异指标上提升了0.013,在评价配准前后图像间灰度差异的RMSE指标均值为0.00297。(3)基于形变一致性损失函数的DCE-MRI非刚性配准研究:针对配准伴有明显灰度变化的乳腺DCE-MRI间非刚性形变易产生病灶扭曲的问题,本文采用添加形变一致性损失函数的MC-Net进行配准。首先结合多种常用的图像扩增方式扩充乳腺DCE-MRI数据,解决现有数据量不足以训练深度学习网络的问题。随后在扩增后的乳腺数据上对结合形变一致性损失函数的MC-Net网络进行训练,得到训练好的配准模型。最终实验对比结果表明,本文方法能有效解决在DCE-MRI形变配准时,由图像间明显灰度差异带来的病灶扭曲等问题,提高配准的精确性。
其他文献
水下图像增强在海洋探测领域中起着非常重要的作用。由于水下存在大量大小不一的颗粒物,成像时这些颗粒物会导致前向散射、后向散射及水本身会导致光强指数衰减,最终致使水下图像出现对比度低、能见度低、含有明显噪点等问题。使用普通光强图像难以取得理想恢复效果。越来越多的研究表明偏振是某些水下生物低光照下拥有视觉的关键。使用偏振图像的恢复效果受制于成像模型中对参数估计的准确性;使用深度学习受制于使用人工生成的水
三维彩色点云能够同时描述三维空间中物体的相对位置和颜色信息,近年来,越来越广泛地应用于数字化现实场景,如工业检测、自主导航、文物保护、虚拟现实等。通过标定激光与相机,对三维点云染色可以获取三维彩色点云。而在构建大范围场景的三维彩色点云时,需要利用配准方法,将不同位置下的三维彩色点云统一到同一坐标系下。本文通过研究三维激光与相机的间接标定法和直接标定法,融合三维点云与二维图像,获得三维彩色点云。对相
小型旋翼无人机灵活度高、机动性强,能适应复杂的室内外场景,因而在未知环境探索和地图构建等任务中得到越来越多的应用。目前,基于旋翼无人机的自主探索与语义建图面临诸多挑战:一方面,现有探索方法大多缺乏对探索效率和建图精度的综合考虑,所建地图往往误差较大,不利于无人机后续的运动规划;另一方面,当前语义建图方法对环境中深度变化不明显的区域分割效果较差,容易造成物体语义信息的丢失。本文对旋翼无人机的自主探索
随着智能制造领域的迅猛发展,制造业企业的在生产中产生的海量业务数据成为了制造业企业发展的宝贵财富。基于文本编程的工业数据管理系统要求开发人员熟练的掌握编程语言以及相关的工业互联网通信技术,存在着技术门槛高、复用性差、系统升级困难等问题。本文研究了一种图形化程序编程技术,用于实现工业数据采集与管理程序的图形化无代码开发。主要研究内容如下:首先,在研究了相关图形化编程标准与工业互联网通信技术的基础上,
配准技术指将不同时间、不同传感器在不同条件下获取的多幅图像与点云数据进行匹配对齐的过程,是计算机视觉中十分基础且重要的问题,在三维重建、视觉同步与定位、目标识别与跟踪、检索等计算机视觉任务均有着广泛的应用。基于特征的配准方法主要根据对特征关键点邻域进行特征描述以及对关键点特征进行匹配。特征描述旨在生成一个高维向量表征关键点的邻域信息;特征匹配针对待配准的图像或点云数据的特征点集确定特征点对应关系。
随着高通量DNA微阵列检测技术的发展,产生了众多的基因相关数据,数量庞大的基因和生物网络的复杂性成为理解和解释这些数据的巨大挑战。聚类作为一种重要的数据分析方法,常用于分析基因表达数据。通过聚类阐明隐藏在基因表达数据中的模式,从中获取细胞的生理状态、基因表达调控信息以及基因功能对功能基因组学的研究有着重要的意义。在基因表达数据的获取过程中,受设备、实验环境、采集方法等因素影响,很多数据不可避免地存
随着科技的发展,机动车的数量在极速增长,随之而来的交通事故、交通堵塞、空气污染以及能源浪费成为了不容忽视的问题,为提高道路承载能力、提高道路交通效率、减少车辆能耗消耗以及降低空气污染保护环境,车辆编队成为了道路交通中重要的驾驶方式,也是学术界重要的研究课题。本文针对车辆编队问题,对车辆编队构型过程进行了聚类设计,在基于MEC的车联网络架构下,实现了以能耗为优化目标的编队构型形成过程,本文具体的研究
CAD系统的广泛应用使得企业积累了大量的CAD产品模型。CAD模型检索技术能够促进模型的重用并加快企业中产品的设计。产品模型常常以不同的格式存储,并使用标准格式在不同CAD系统间进行交换,本文研究了一种标准格式CAD装配体模型的检索方法,可同时用于标准格式和各种商用格式CAD装配体模型的检索。研究了基于零件模型参数矢量的装配体检索方法。从零件模型中直接提取一些参数,通过归一化这些参数构造零件模型参
材料微观结构表征与重建(Microstructure Characterization and Reconstruction,MCR)可用于建立加工-结构-属性(Processing-Structure-Property,PSP)关系,是计算材料学与材料设计的研究重点。多相非均质材料广泛应用于航空、电气、地质、医学等领域中,利用MCR方法能够获得该材料的大量统计等效模型,为构建材料的PSP关系提供
人体的三维建模与表示是计算机视觉与计算机图形学领域的一个经典问题。该问题已经被研究了很久,且有许多杰出的工作。人体具有复杂的几何结构,多样的动作,三维人体的表示也丰富多样,如网格,体素,点云等,以及近些年的学术成果——参数化人体模型。对于三维人体的视觉重建任务,研究人员往往依据人体表示的不同进行人体重建算法的构建。人体重建算法分为裸体人体的重建以及具有个体化特征如衣服、头发等几何细节的人体模型的重